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Introduction
During the fir'st half of the 1980's decade tr,vo seemingly unrelated areas of computel
sciencc calrle into contact: the oncc rror..c awakening investigation of possiblc applica,l,ions

tbr artificial neural net,s ancl the sczrlch for efficient methods to cope rvith the.A/2-hardrrcss
o1 optimization problcms. Ilopfield introduced in 1982 a model of neural nets r,vith sym-
rnctrically rveightcd conncctions performing an associative memory task [Ho82], rvhich
rvas latcr' [HoTa85] found to bc capable of expressing hald optimization problems. I'he
enclgy function uscd in the earlier paper to describe the fact that stored patterns actecl

lil<e "attractors" r'vas found to be usable both as a langua,ge to express e.g. the Tnlvn-
LING SALDSI,IAN PRoeLpr'{ (TSP), ancl as a dc{inition 1or a, network detclmining local
opl,ima of the encrgy function automatically. This interesting feature lead to a lot of
experirncnts rvith the noi'v so-called "Ilop{iclcl ncts" (for an overview see [HKP91]). Ilut,
cliszrppointingly Hopfield nets, though consisting of fine-grained processors, seerl to bc
rvolking rather slowly, and the only available algorithm controlling theil computation is

secluential: oncr processor updates its state a,t a time.
While Iloplield's work (together with the leinvention of backplopagation) lcd to a

lrew wave of inl,crest in neural networks, more "tr-aditionally" olicntecl cornpul,cl scicnl,ists
began to invcstigate the complexity of two apploachcs to optirnization: approxiurzrl,ion
zrncl loca,l sezrlch. An approximation algorithm tries to find a solution that is "ahnost
a,s goocl" as the global optimurn. A local search algorithm looks for a local optimum, a,

solul,ion ivhich cannot be irrrproved by a slight change, a step florn one feasible solution to
its (sorrrchorv defined and easily accessiblc) ncighbor. Local search algorithms are l<nou'r'r

to be quite goocl irr rnany practical applications (for more information see [PapSt82] ancl

IJPaYSS]), but fincling local optirna was shorvn to be cornputationally ha,rd even fol simple
problerns like Max Cur (for exact definitions of all optirnization problerns considerecl in
this paper sce appendix A). In some cases appr.oxima,tion should be preferled, in others
local scarch.

lrr I.IPaYSS] the complexity class PLS rvas introduced containing those 1ocal searclr
ploblems for rvhich evcry single scarch step talies polynomial timc. This class lies so-

nrcn,lrcLc bctlveen the functional equivalents of 2 ancl AtP, bttt sccms to equal none of
tlrcsc. So PLS-complete ploblems may have no efficient local scarch algor.ithm a,t all. We
rvi11 refel to some -,.'esults on this topic later. Another leason fol the irrvcst,igation of local
search algolithrns is the so-called "simulatecl anrrealing" l,cchniclue (see [KiGVS3]). This
flanboyant metaphor names local sealch procedures which alc landomized such that onc
can hopc 1,o bc "shol," out of bad local optima by stochastic changes applied 1,o solution
vectors. The probability af these changes (r'cferred to zls "tr-'rnperature") is dccrc:rsc,d

slorvly duling the stochastic optinization process in oldcr to stay in a (hopefully goocl)

locurl optirnum at last.
At the same time the interest in parallcl computirrg increa,sed due to thc progress

in lrtrrclnare l,echnologv. Whereas it is irrrprobable that AIP-hard optimizal,ion problems
have fast palallel algolithms (unless AIP :,A/C) this is not clear' 1or a,pproximation or
local search problems. Fol optimization problem rvith polynomially bounded optinra loca1



sealch r:lcarly takes at rnost polynomially many search s1,cps. In 1,his czrsc a 2.C.S ploblem
rrray cvcn have a fast palallel algorit,hm. Approximations are often a,lso computablc in
ArC.

Differences bctrveen "A/2-hard optimization problems regalding apploxirnation and
loca1 search lead to complex situations. Some problems a,r'e ha,r'd for- both apploxima-
1,ion and local search (the TRavBLTNG SALESMAN PRoBLIiM canrrot be approxirnated in
polynomial time [PapSt82] (unless P : AIP). local search velsions of the Ttt,wpl,Ixc
Sarpsltax PnoRlor,t are PLS-complete [Pap92]). Somc problems are hard to apploxi-
mate ancl cas), fe1 local search (thc INutipnuoENT SET problern cannot be approximatecl
irr polynomial time [BoSc92] (r-rnless P: AIP), but has an efficient palallel local sea,rch

algorithrrr [Lu86]). Some pr-oblcrns zn'c easy to approximate, but have no efficient local
searclr algorithm unless PLS : P resp. P : AIC (the Max Cur problem) see section
4.2). Some problems are casy for both approximation and local search (IunnenNDENT
Su't' r'estricted to constant degree graphs).

Hopfield's cnergy function can easily exprcss both INonPENDENT Se'r and \tlax Cur
ancl thelcfore belongs to the fir'st cat,egory, the real "hard" probiems. This result has two
possible interpletations: Orre may consider such hard problems simply as intlactable, or
one may think of them as vely explessive plogramming languages where computa,tional
harclness only reflec,ts 1,he power to encode problems. This second interprctation cotild be

sc,nsible in the casc of the Hopfield energy function since it offers both a lathcr c:orrtfortable
language using cluadratic proglarlrling and a mechanism performing local search.

Whcrcas the origina,l purpose of llop{ielcl nets was the solution of an associative me-
mory task, 1,his application wa,s soon found to bc not too successftrl. If the right application
for Hopficlcl nets (assuming one exists) is cornbinatolial optimization, then practical corr-

siclcrations should govern the lcsearch interest. Most plactical applications of Hopfield
rrcl,s used a, stocha,stic or simulated annealing approach. One is not really interestecl in
solutions having the structural property of local optimality (as in the associative memory
ploblem), but in "good" solutions, i.e., solutions that a,re at least as good as local optinra.
This lcads to the cluestion rvhethel approximation and local sea,rch may be combined in
an attempt to approximate local instead of global optima. For a, heuristic approach tcr

opl,imization this is as good as dctcrmining local optirria cxactly. Thc cluestions arising
fi'om these considerations are:

o Do 2-halcl local search ploblems have fast palallel algolithms 1,hat, approximate
local optima?

o Do P LS-complete loca,l sea,rch problems ha,ve polynomial tirnc algorithms that ap-
proximate local optima?

This paper tlies to investigate thc complexity of local approximation, i.e., of the tasli
to find solutiotts to optirnization problcrns rvith cost approximatively as goocl as the u'oLst
loca1 optimurri tha,t has nonnegative cost ol arbitrarily better'. The main 1,ool to shor.r'

that this task is hard will be a notion of reducibility. Wc define a reduction that plcscrves
approximabilitv with respect to the rvor-st local optimum rvith nonnega,tive cost and shorv



that, complete ploblenrs (fol c:lasses of local sea,rch problerns) undel t,his leduction exist.
Thcse problems havc no considerabiy more efficient local apploximation algorithms tharr
1ocal optimization algolithrns.

Thc main part of the paper is an investigation of the complexity of the IIopfield energy
function unclel the foul approaches global optimization, global approximation, local op-

l,imization, and local approximation. The genelal Hopficld function is shorvn to be a verl'
hard ploblcm: it is complete for the class of ,A/P-maximization problems, and it is com-
plele for the class of PLS-rnaximization ploblems, bo1,]r via approximability preserving
recluctions. This implies thal no cf{icient algorithms exist that firrd ol appr-oxirnate local
or glolral optima of thc Hopfield energy function (unlcss P : hfP resp. 2 :PLS).

'Ihereforc rve investigate restrictions on the Iiopfield energy function: r'estrictions on

the sign of the weights and lcstlictions on the size of the rveights. ln thc casc of posil,ive
wcights the complexity of global optimization collapscs, but local approximation is shorvn"

1,o be rather har<l compared to global optimization. The case of negative r,veights should
also be easier than the genelal one (though vely much halder tharr the casc of positivc
rveights), but 1,his remains a conjecturc. A lestriction to polynomially or unit size weights
is anol,hcl possibility to decrcasc the complexity of the llopfield energy function. It seems

as if t,he Hopfield function were usable in different sti-engl,hs ivith different complexities
thtis being a rather flexiblc tool for the expression of optirnizal;ion problems.

We also consider apploxirnalion ancl local search for thlee glaph cut problcms tha1, arc
very <;losely related to 1;he thr-ee versions of the Hopficld cnergy function i,vith restricted
signs: a cut problem and its r:olr-csponding version of the Hopfield energy functiori are

ecluivalent regarding local resp. global optirnization. Max Cur is related to the ncgativcll,
weightcd Ilopfield function. NIax Cur and the Max NP/Max SNP problems defined
in [PapY91] have vcly fast parallel approximation algorithms in contrast to thc negatively
u'eightecl l-lopfield function. s,l-N{IN Cur is rclatecl to the positively rveighted Hoplielcl
fiinction as rve1l as to 1,hc famous s,l-M.a.x Frow. Also a genelalized Max Cur ploblem
rvi1,h positive and negativc wcights is considered, that is related to the genelai Hopfield
frinction.

The orgarrizatiorr of this paper is as follons: section 2 presents detailed material and
rlcfinil,ions on approxima,tion, loca,l scarch, a,nd thc ncw par-adignr o[ local apploxima,tion.
Sccl;ion 3 investigates the Hopfield energy function. Section 4 investigates the glaph cut,

ploblcms. Definitions of optimization problems are provided in appendix A.
'Ihese are the contributions of the paper: We define a special kind of reduction that

preselves approximability rvith lespect to an approximation quality measure called "local
pcrfolmance ratio" ancl exhibit complete problems uncler such rcductions fol a hierarchy
of classes containing local search problems. These complete problerns are shown to be as

hard to a,pproximate a,s to optimize (locally). The main par-t of the paper- investigates 1,hc

cornplexity of the llopfield energy function. The lesults of this section can be found in
thc fbllowing table.



Max {0,1}- Hoerlur
Dp; u;,jsts.i-l;tis;

Positive Weights Negative Weights Pos./Neg. Weights

l1l-weights Opt.
Global App.

RTC'
n'-App. NL-hard

NP-cpI.
n'-App. NP-cpl.

NP-cpl.
n'-App. l{P-cpl.

l1l-weights Opt.
Local App.

RTC'
n'-App. / ACo

P-cpl.
?

P-cpI.
n'-App. # ACo

pol.-weights Opt.
Global App.

RTC'
nfr-App. NL-hard

Al-P-cpI.
n'-App. AIP-cpl.

NP-cpI.
n'-App. AfP-cpl.

pol.-weights Opt.
Local App.

RTC'
nA-App. .C-hard

P-cpI.
?

P-cpl.
nk-App.P-cpl.

exp.-weights Opt.
Global App.

P-cpl.
2"-App. NL-hard

NP-cpl.
n'-App. AfP-cpl.

NP-cpl.
2"-App. AIP-cpI.

exp.-weights Opt.
Local App.

P-cp\.
2-App. N L-hard

PLS-cpI.
?

PLS-cpl.
2' -App. P L9-cpI.

n denotes the number of vertices of a net, € some positive constant, and k an arbitrarily
large positive constant that depends on the polynomial bound attached to the weights.

"Opt." refers to the complexity of computing optima, "App." to the complexity of
approximalion. L and AIL abbreviate LO]SPAC7 resp. NLO]SPACS. RTC| stands
for the class of functions computable by uniform probabilistic threshoid circuit families
of logarithmic depth.

In section 4 there is a an amplification result for s,l-Mnx Flow and s,l-MtN Cur
(showing that they either have an approximation schemeinAl'C or cannot be approximated
inAIC within any constant in the case of unbounded weights). Also a Af LOgSPACt-
hardness result for approximations of s,l-MRx Flow, s,l-MtN Cut, and s,l-BLocKING
Flow is derived. In contrast to this we have a constant quality TCo approximation
algorithm for all Max NP problems (including 1\{,0.x Cur). Cited material is marked
explicitly or provided as "fact".

I would like to thank Georg Schnitger for his support during the development of this
paper and especially for suggesting the general theme of approximation of local optima.



2 Definitions and Prelirninaries
This section provides the necessary background for the development of a theory of local
approximation. First there is some material on sequential and parallel complexity classes

and on neural nets, afterwards information about approximation algorithms, local search,

and a new combination of both is given.

2.L Complexity Classes and Neural Nets

We rvant to investigate how hard it is to solve computational problems. A basic notion
is that of a "complexity class". We begin by defining the most important complexity
classes.

Definition 2.L A function "f , {0,1}* - {0,1} is called a "decision".
The class P consists of all decisions computable by deterministic Turingmachines in

polynomially bounded time.
The class LOgSPACt consists of all decisions computable by deterministic Turing-

machines with logarithmically bounded worktape.
The class PSPACT consists of all deci,sions computable by deterministic Turingma-

chines with polynomially bounded worktape.
The classes AfP, Af LOgSPACt, A|PSPACt consist of all decisions computable with

the same resource bounds as P resp. LO]SPAC| resp. PSPAC|, while allowing the

Turingmachines to be nondeterministic.
Decisions f will be identif"ed with the formal languages /-t(1).

The following fact is well known (see e.g. [J90]):

FACI 2.1 1. LO7SPACT C ATLO?SPACT CP C NP CPSPACT: A|PSPACS

2. ATLO7SPACt + PSPACT

It is unknown which of these inclusions (except the one noted in 2.) are strict. An
exact comparison of these fundamental complexity classes belongs to the most important
problems in computational complexity theory. Commonly it is assumed that all these
classes are different from each other. A key concept to find problems that probably
separate two complexity classes is reducibility. We now define the most basic reductions.

Definition 2.2 A language L is said to be "polynomial time reducible" to a language At[
(L3rM)rf amapping f eristssuchthatr€L e f(r)€M andf iscomputableby
a Turingmachine in polynomially bounded" time.

A language L is said to be "LO9SPAC| reducible" to a language M (L <ros M)
if amappirsf eristssuchthatr€ L <+ /(r) e M andf iscomputablebya
Turingmachine with logarithmically bounded tape.

A language L is said to be "hard" for a class of problems K with respect to some
reduction R if all problems in K are R-reducible to L. L i,s called "complete" for K with
respect to sorne reduction R if L is hard for K aia R and L is a member of K.



The following fact illustrates the way reductions are used (see [J90]):

Fact 2.2 1. Polynomtial time reductions are transitiue.

2. LO?SPACt reductions are transi,tiue.

3. If a problem that is NP -hard ui,a polynomial ti,me reductions is in P , then P : Af P .

/,. If o problem that isP-hard uia LOQSPACT reductions is in LOQSPAC|, then
LO?SPAC| : P.

Since we are interested in weak versions of hard problems complexity classes for parallel
computations are important. We choose the most common ones based on Boolean circuits.

Definition 2.3 A "Boolean c'ircuit" on abasisQ is a S-tuple (V,I,A,E,t), where I (the

"input gates") is the set of sources of a directed acyclic graph(VUI,E). V consists of the

"internal gates", A € V is the "output gate" of the circuit. If u e V has indegree r, then
l.(u) is a function a from {0,1}' to {0,7}, the "gate funct'ion" computed by u. a must
be a member of (1, which is a set of functions {0,1}" - {0,1,} for all natural numbers r.
The function computed by the circuit on an i,nput r € {0,1}l1l is def,ned i,n an obui,ous

recursiue mann,er.

A circuit has "fan-in" , if all its gates haue indegree at most c. The "size" of a circuit
is the cardinality of V U I , the "depth" is the length of a longest path from an input gate

i e I to the output gate y.

The size of 1 is called the "input length". A single circuit has fixed input length and
thus cannot compute functions on {0,1}..

Definition 2.4 A "family of circuits" is a sequence (C,)nEnr of Boolean circuits, where
circuit Cn has inltut length n. For a "uniform" family of circuits a standard representation
of the circuit C, must be computable (giuen ") by a Turingmachine with worktape bounded
logarithmically in the size of C".

The size and the depth of a circuit farnily are functions of n determining the size

resp. the depth of each circuit C" of the family.
A circuit family is said to haue constant fan-in if some constant c erists that bounds

the fan-in of euery C,. Otherwise the circuit family is said to haae unbounded fan-in.

Circuit families that are nonuniform are able to compute any function on {0,1}.,
because every function restricted to {0,1}" is computable by a single circuit. Uniform
circuit families on the other hand are not more powerful than Turingmachines.

We now define the classes of problems that are solvable by most common theoretical
rnodels of fast and efficient parallel computers.

Definition 2.5 The class AlCk ,ortists of all decisions computable by uniform fan-in 2
circuit families of size O(p(")) and depth O((log n)k) for a polynomial p and an integer
constant k > L



The class ACk consists of all decisions computable by uni,form unbounded fan-in circuit

families of size O(p(")) and depth O((log n)k) for a polynomi,al p an a integer constant
k > 0. The basis of ACk circuits is restricted to AND, OR, and NOT-functions.

AIC d"enotes the union of att AlCn , AC the union of att ACk .

The class Af C ts called the class of "massively parallelizable problems". It can be

defined in terms of circuits, computer networks, or PRAMS (see [KarRa9O]), and is the-
refore robust. Note that ,A/Co has not been defined because constant fan-in circuits of
sublogarithmic depth cannot use all of their input. The following fact is discussed in

ueOl.

Fact 2.3 1. rVC : AC

2. ArCr e LOgSpACt c ATLO7SPAC, e ACr

Another important tool in algorithm design is randomization.

Definition 2.6 A circuit that has additionally to its normal inputs m further inputs
each of which takes the aalues 0 and 1 independently with probability Il2 is called a

"probabilistic circuit". We say that a probabilistic circuit C performs a "randomized
separation" of o decision f(*) lf the random uariable C(r) being the output of C on r
futfills

problC(r):01/(') -01 : I A problC(r): ll/(') :I)> I12

for the described probability distribution on the new input uariables. The defi,nition is

ertended to circuit families by demanding that eaery circuit of the family performs a
randomized s eparatio n.

A circuit complerity class that is named beginning withR (e.g. RAfCr) contai,ns those

decisions for which a randomized separation can be performed by a uniform circuit family
with the same restrictions as its determi,nistic counterpart.

In 1943 McCulloch and Pitts published [McPia3] a mathematical model of the activity
of single neurons. This model is based on threshold-functions. We will consider threshold-
functions as gate functions of unbounded fan-in circuits thus generalizing the classical

circuit model. Other gate-functions used in neural networks are not considered.

Definition 2.7 A deci,si,on.f ' {0,1}' r {0,1} is called a (linear) threshold function if
real numbers 'u)1r. . . ,unrt erist such that f : ?r(wtr. . .rwn,t), where

o,(*,,...,un,1)(r):l' if li=1w;'r;)t- \ o otherwise.

A threshold circuit is an unbounded fan-in circuit whose basis is the set of all threshold-

functions. The classes TCk contain those functions computable by uniform polynomial
.size and O((log n)k) depth threshold circuit families, where k > 0 is an integer constant.
TC : UtrTCk .



It is important that every threshold function can be written with integer weights of
size (n ! I)@+r)lz f 2 (see [Mu71]). Another interesting fact is that (even exponential)
weights have only small power: Replacing the threshold gates of a circuit by Marontrv-
gates (and thus by threshold gates with unit sized weights) costs a polynomial factor in
size and only one additional layer in depth ([Gol92]). The first part of the following fact
is obvious since AND, OR, NOT are threshold functions, and any threshold function can

be evaluated by a AlCl circuit (see [Par94]).

Fact 2.4 1. Let k > 0. Then: ACk cTCk cAl'Ck+1' C ACk+r.

2. ACo gTCo c ArCl c LOgSpACt gATLOgSpACt g AC' gTC' g

3. ATC: AC:TC CP C AfP CPSPACT,

The only class in this hierarchy that is known to be strictly separated from its succes-

sors is ACo,by the functions PRRtlv and MaroRITy (see [J90]), which lieinTCo. Of
course also AILO7SPAC1 + PSPACT is well known.

We will use the convention to say that a function "f ' {0,1}. - {0,1}. is in "functional
K" for a complexity class K if the decisions f; arc in K, where f;(r) -- 1 itr /(r) has at
least i outputs and the ith of these outputs is 1, and if the language consisting of all pairs

@,lf @)l) is in K. Members of functional 2 will be called "computable in polynomial
time".

Threshold circuits have been proved to be astonishingly powerful. The following results
can be found in [SBKH93] and [SRo9a].

Fact 2.5 The following problems a"re computable in functional TCo; ItnRRtBD SuM
(of n numbers with n bits), MulrtplrcATloN (of 2 numbers with n bits), SonrrNc (o/n
number.s with n bits) , MuRIX MULTIeLICATIoN (of 2 n x n-matrices with n-bit integers) .

This implies ([Pan85]) thatDuIaRMINANT (of a nxn-matrir with n-bit integers) can be

computed in functional TC\ .

The neural networks described so far and those used in learning algorithms like back-
propagation (see IHKP91]) are acyclic. General recurrent networks have not been investi-
gated as thoroughly (see [Par9 ]). The most well-known type of recurrent neural network
is the Hopfield net (see [Ho82]).

Definition 2.8 A "Hopfi.eld net" is a tuple (V,8,(.), whereV is the set of neurons, E
contains their connect'ions, (V,E) forms an undirected graph (without self-loops), and I is
a rnapping assigning integer weights to edges and thresholds to uertices.

At the beginning of a computation of a Hopfield net a "state" s, € {0, 1} is assigned
to euery neuron Di. Then some neuron takes the states of its neighbors uj as inputs
and computes the threshold function determined by the threshold t(u1) and the weights
l(u;,u1). The neu,ron changes its state when the output of this computation i,s different

from its state. The goal of this process is to reach a stable state of the net, i.e., where no
nelr,ron will chanqe its state.

As we will see later, reaching a stable state in a Hopfield net is the same as finding a
local optimum of a suitably defined energy function.

c Arc.



2.2 Optimization Problems and Approximation Algorithms
Optimization problems make up a large and important part of the problems known to be

AIP-complete (see [GJ79]) and thus commonly believed to be intractable by computers.
But the traditional theory of reductions and complete problems is not perfectly suited
to optimization problems for two reasons: first optimization problems are not decision
problems and are normally placed in complexity classes by introducing some bound on the
objective function. Secondly classical reductions do not preserve approximability. There
are many approximation degrees among A[P-hard optimization problems (see [Ka92] for
an overview). Now we define a general framework for A|P-optimization problems.

Definition 2.9 A A|P-marimization problem L : (P,C) is a function optp,6(r) :
max{C(s, r)lP(s, r)}, where C : {0,1}. x {0,1}. ---+ Z is the "objectiue" (or "cost")
function and P : {0,1}. x {0,1}. - {0, I} is the "feasibility predicate". P and C must
be computable in polynomial time. r will be referred to as an "instance" of L, s as a

"fea.sible solution" to r. Additionally we demand that optp,g(t) 2 0 for all r, that lsl is
polynomially bounded in lrl for all feasible s, and that it is possible to construct a feasible
solution of nonnegatiue cost to any r in polynomial time.

AIP -minimization problems are defined analogously.

Since probably no efficient algorithms for AIP-hard problems exist, one is interested
in algorithms for hard optimization problems that find "good" solutions. An algorithm
which produces a solution with cost near the optimum is called an "approximation algo-
rithm". The quality of an approximation algorithm is commonly measured either with the
"relative error" or the "performance ratio". We choose the latter to be concordant with
the definitions we will make for local approximation algorithms. These will be allowed to
give solutions arbitrarily better than (local) optima thus making relative errors useless.

Definition 2.LO Let L : (P,C) be some AIP-optimization problem. The "performance
ratio" of a solution s to some instance r of L with global optimum C(s"r1(r),r) i.s:

R;(s, r, I C(".,r(r),r)lC(s,r) for marimization problems
'': I CQ,r)lC(s"r1(r),r) for minimization problems

if C(s,r) > 0 and C(sor1(t),t) > 0. If C(s,r) 10 or C(s,rt(r),r) : 0, then Ry(s,r) is
defi,ned as lC(s,r)l+ C(s"r'(r),r) + 1.

Let A be an algorithm that produces some feasible solution s"4(r) giuen an instance r
of L. Then A is called a polynomial time p-approrimation algorithm for L (for a function
pl*)>I) ,f R;(sa(r),r) < p(1") fo, all instances r of L, and if A runs i,n polynomial
time (we say "A approrimates L within p").

A family of algorithms Ao for euery constant p ) I is called a "polynomial time
approrimation scheme' (PTAS) for L if each Ao is a p-approrimation algorithm for L,
and if the running time of eaery algorithm Ao is bounded by a polynomial i,n the length

10



of its input, where tl| - I) may appear in an erponent of the time bound. If p does

not appear in an erponent of the time bound, then A is called a "fully polynomial time
approrimation scheme" (FPTAS).

An analogous def,nition can be made for AIC p-approrimation algorithms and a NCAS.

AIP-hard optimization problems can be distinguished by their approximability. There
are problems which have a FPTAS or a PTAS, others are approximable within a constant
but have no PTAS, and there are problems that cannot be approximated within a constant
in polynomial time (assuming P + AfP).

An especially interesting class of problems was introduced by Papadimitriou and Yan-
nakakis in [PapY91]. They characterized a class of AIP-maxirnization problems with
ptrrely syntactical means based on a syntactical characterization of Aln Uy Fagin [Fa7a].
Their classes Max NP and MRx Sl{P contain only problems that can be approximated
within a constant in polynomial time, but problems hard for these classes have no PTAS
(unless P:AIP).More about Max (S)NP in section 4.2.

To show that an optimization problem is hard to approximate one has to create a
"g.p" in its cost function, i.e., express some hard decision problem such that the cost of
an optirnum is at most !l/ if the decision is negative, and larger than cW tf the decision
is positive (or conversely). Then a sufficiently good approximation (performance ratio c)

allows to solve the decision problem and is thus shown to be hard.
Anothel irnpoltant way to prove that a problem is hard to approximate is to use re-

ductions. But poiynomial time reductions are too weak for this: they are defined among
language problems and do not take the approximability of optimization problems into
account (these are turned into language problems). So a stronger type of reduction is
needed, namely a mapping that preserves approximability. Then it is possible to create
a gap for one problem and transfer this gap to other problems by reductions. Several
attempts have been made to find a good notion for such a reduction. Performance ratio
preserving reductions were introduced in [Sim90]. We choose a similar reduction defined
in [Ka92] which is especially suited to reductions between problems that cannot be appro-
ximated within a constant. For such problems performance ratios must be measured as

furrctions of the input size. The so-called "S-reductions" consider the Size amplification
of the mapping among two optimization problems carefully.

Definition 2.IL Let L,M be two AfP-optimization problems. L "S-reduces with size

amplif.cation a(n)" to M if a(n) is a monotone increasing positiue function, and if there
are two polynomial time computable functions f , g such that

1. .f maps instances of L to instances of M. g rnaps pairs (solution to f (r), r) to
solutions to r.

2. For euery instance r of L and eaery solution s to f(r) the following holils:

Rr(g(",r),r) : O(Ru(s, /(r))).

3. For elery instance r of L: l/(r)l S o(lrl).
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The following two facts are implicit in [Ka92].

Fact 2.6 1. S-reductions are transitiae.

2. If L,M are both marimization (or both minimization) problems and L 4s AI with
size amplif,cation a(n), and if there is a polynomial time p-approrimation algorithm

for M , where p(n) is a monotone increas'ing function, then there is a polynomial
O(p(a(n))) -approrimation algorithm for L.

Fact 2.7 Problems complete (aia S-reductions) for all AIP-manimization (or minimiza-
tion) problems with polynomially bounded optima cannot be approrimated within n' in
polynomial time for some constant e ) 0.

Problems cornplete (uia S-reductions) for all AIP-marimization (or minimization) pro-
blems cannot be approrimated within2n' in polynomial time for some constant e ) 0.

A few problems with their approximation degree (see [Ka92]).
Problem Approximation
Max 2-Sar
Max Cur
INoBpBr'roENT SET
Loivcnsr ParH/nonBrDDEN PAIRS

Max Crncurr OUTPUT

Max SNP-complete
Max SNP-complete
no pol. time n'-app.
cpl. for pol. bounded A[P-max. problems
cpl. for Af P-max. problems

2.3 Local Search

Another approach to find "good" solutions for AIP-hard optimization problems is local
search. Some polynomial time computable neighborhood structure is defined on the space

of feasible solutions and one looks for a solution which has no neighbor that is better
than itself. If all optima have polynomially bounded cost this yields a polynomial time
algorithm, because every local search step produces a strictly improved solution. If the
cost function is unbounded, local search can take exponential time, however.

Of course one can easily define instances of AIP-hard optimization problems where
local search does not necessarily find a global optimum. Which local optimum is found
depends on the initial solution from which local search starts (which is usually chosen

randomly) and the rule that determines which one of the (possibly many) improving
local changes is chosen. For some problems (e.g. \4ax Cur) local optima approximate
the global optimum in the sense of the previous section, but for many problems this is
not true. Nevertheless local search has become one of the most popular approaches to
AIP-hard optimization and finds good solutions in many practical situations (e.g. the
Lin-Kernighan algorithm [LiKe73] for the TSP).

A question raised in [JPaY8S] is how much time local search needs. There local search
problems were examined for which every single search step takes polynomial time. These
probiems form the classPLS. Since the cost function is unbounded, the problems may
have exponential optima and local search can take exponential time. Later (in [SchY91])
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several P- andPLS-completeness results were proved for seemingly easy problems like
\{ax Cur with the neighborhood that allows to change the side of one vertex in one step

(P- or PLS-completeness depends on the size of weights).
A related question is whether local search can be parallelized. For the (non-approxi-

mable) unweighted INIBpnNDENT Sor problem an efficient (AfC) parallel algorithm is

known, but the problem is monotone and a parallel greedy approach is possible (see

[Lu86]). For other simple (and unweighted) problems Z-completeness results exclude an

efficient parallel algorithm (unless P : NC). This is one of the major motivations for the

consideration of algorithms that approximate local optima.
We now define local search problems in the same way as in [JPaY88].

Definition 2.L2 An AfP-optimization problem L: (P,C) together with a neighborhood

structure N(s,r) that maps a solution and an instance to a set of neighboring solutions is

called a P LS problem (for "polynomial local search" ), if three polynomial ti'me algorithms

Ar, Br, and Cr erist such that:

1. Ar produces (giaen an instance n of L) some feasible solution to r with nonnegatiue

cost that can be taken as a starting point for local search'

2. Br decides (giuen a string s and an instance r) whether s is a feasible solution to r
and computes (if s is feasible) the cost C(s,r).

3.Ct has two possible outputs giaen an'instance r and a solution s to r: i'f s is a

local optimum of r then C1 reports this fact and stoqts, otherwise C7 produces some

strictly better solution s' out of N(s,r).

If the three algorithms are computable in the functional equiualent of a complerity class K,
then L belongs to a class we will call KLS. If the cost function is polynomially bounded

the class will be called KLSPot .

The three algorithms allow the (obvious) design of a local search algorithm that takes

polynomial time (resp. has the complexity of K) for every step. But this algolithm may

have to do hard work [PapSY90]:

Fact 2.8 There is aPLS problem L, which has aPSPAct-complete standard algorithm

problem, i.e., finding the solution that the standard algorithm induced by A", 81,, and' C7

uill output solues aPSPACt-complete problem.

Normally one is not interested in a special local optimum, but wants to find somelocal

optimum of aPLS problem. To see that this task is possibly easier than the standard

algorithm problem the class PLS can be compared to classes of search problems.

Definition 2.13 A "search problem" is a relation R g {0,1}. x {0,1}. . An algori,thm

"solues" a search ltroblem R if, when giuen an z e {0, I}*, it either returns an y such that

(*,y) e R or (correctly) reports that such a y does not erist.
The class Ps contains those search problems that can be solued in polynomial time.

Th.e class Al'?s contains those search problems that can be solued by nondeterministic
polynomially time bounded Turingmachi'nes.
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The following is shown in [JPaY8S].

Fact 2.9 1. P gPs:PLSpot gPLS e JtlPs.

2. If a PLS-problem solues a AfP-hard problem, then AIP:Co-AlP.

Though P LS hes somewhere between 2s and AfPs iL is rather improbabl e lhat P LS
equals one of these. Equivalence to AfPs would imply NP:Co-A|P (which is very im-
probable). Equivalence to Ps is not known to have such drastical consequences. But a

polynomial time algorithm for all of P LS would have to be a very sophisticated general
approach and would e.g. provide a new proof that LINBaR PRocRAMMING has a polyno-
mial time algorithm (Lnnan PRocRaUMING with the simplex neighborhood is a PLS
problem for which local optimality implies global optimality).

For the purpose of investigating whichPLS-problems are hard a special kind of re-
duction that preserves local optimality was defined in [JPaYS8].

Definition 2.14 APLS problem L is'?LS-reducible" to a problem M (L 1prc M),
if there are polynomial time computable functions f and g such that

1. f maps instances of L to instances of M ,

2. g ma,ps pairs (solution to f (r), t) to solutions to r,

3. for all instances r of L: if s is a local optimum of f(r), then g(s,r) is a local
optimum of r.

If f and g are cornputable in functional LOQ SP ACt , then the reduction is called a "LLS -
reduction".

This notion of reducibility makes sense:

Fact 2.10 1. PLS- and LLS-reductions are transitiue.

2. If L 1p,:s M then a polynomial algorithm that f"nds local optima for M 'induces a
polynornial algorithm that f,nds local optima for L.

3. If L /-ccs M then a AIC algorithm that finds local optima for M induces a AfC
algorithm that finds local optirna for L.

An important aspect of local search problems is the neighborhood. A "larger" neigh-
borhood structure can make local search harder, but may yield better local optima
(e.g. the Lin-Kernighan neighborhood for the TSP compared to a neighborhood that
allows only to remove two edges and insert two other edges). We are mostly interested in
problems having simple neighborhoods.

Definition 2.L5 If a local search problem L allows all of {0,1}" as solutions to the
instances with solution length n, then the neighborhood structure where for a solution s

eractly those strings in Harnming distance k from s are neighbors is called the "k-flip
neiqhborhood".
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The fbllowing fact is easy to infer from [JPaY8S].

Fact 2.11 For allPLS problems L: (.P.C,N) the:r'e is u LLS-reduct,ion, to a problcm
AtI : (P',C',lV'), su,ch that P' is triuial, i.e., all strinqs of suitable length are. sol,uti-
ons, anrl,/y'' ls th,e l--flip neigltborlrood,. Moreouer, polynomially boun,rJr:tJ optima keep this
propert'y.

The result can even be strengthened regarding the complcxity of tlre cost function.

Theorenr 2.12 1. [Jnbounded weight Max Cur is inTCoLS.

2. Llnweighted Max Cur is in TCo LSp"t .

3. Unbounded weigh,t NIax Cur is PLS-complete uia PLS-t'eductions.

.1 Lln'utcight r:d Max Cu't' is PLSpot -complete uia, LLS-rcd,uction,s.

Pnoon: 'lhc first t,rvo statements hold bccause all strings of suitable length are t'easible
solutions (making feasibility t,rivial), and computing the cost of a cut as rveli as iesting
rvhether a, solution is locally optirnal is possiblc in funci,ion alTCo for Max Cul regalcllcss
of the sizc of the rveights: a string of length ?? over {0,1} codes a cut by detelmining the
side of every vertex a,s 0 or 1. For computing the cost of a given cut the weights of
external edges have to be found (rvhich is possible in function al ACo) and havc to be
strrrmecl (rvhich is possible in functionalTCo due to fact 2.5). The algorithms,4,6, and
C fi'om cle{inition 2.I2 are easy to derive from this. I'hus 1,hc univcighted problem is in
TCo LS|"'L , the unbounded iveight problem in TCo LS .

The third sta,tement is proved in [SchY9l] as well as the l<ey result leadirrg to the
fourth statement. APLSp't problem can be reduced to unrveightecl Max Cu'r, because
its sta,nclard algorithm can be impiernented on a polynomial size Boolean circuit, and this
cilcuit can bc. evalual;ecl by finding iocal optima for unweighted Max Cur.

It u,as shorvn in [SchY91] that the (2-complete [J90]) Crn.cr.rru Var,uri PRosLpr,t can
be solvcd by finding local optima for the unweighted Max Cu'r lrroblem with the 1-flip
ncighbolhood. Thc NInx Cut instances allow to read off the output(s) of a Boolean
cir.cuit clilcctly from thc unique locally optimal solution vcctor.

An instance r of a PLSp't problem t cern be rnapped to a circuit computing the
outpnts of the standald loca,l search algorithrn of ,L on r (the circuit can be const,r.uctecl

h LOOSPACT fton the'Iuringmachincs of Ar, Br,, ancl C;). This circuit can be rnapped
in lrrnctiornl LOGSPACT to an unweighted x,tlax Cur instance as shown in [SchY91].
lfhc ou1pu1,s of thc circuit can be read off from a locally optimal solution to the Max
Cur instance. This defines the tlvo rnappings ol a LLS leduction. n

The pr-oblem Flrp is the originally used generic PLS-complete problern ([JPaYSS]):
given a size n circuit with p inputs and g outputs, fincl an input assignment such that the
natural numbcr cncoded by the outputs of thc cilcuit is loca11y maximal ovel the 1-flip
nciglrborhood. If the optimum is polynomially bounded (i.e., a size n cir:cuit has O(1og n)
outputs) lve will call the problem FLIPT,, (or rnore exactly FLIP1..1o.n rvith k.log n outputs).
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Ft,tp is the local optimization version of l\{ax CrRcutr Ourpur. Generally the circuit
must consist of fan-in 2 and fan-out 2 AND/OR gates and of NOT gates. If the depth is

restricted to log"n, then the problem is called AlC"-Fup rcsp. AIC'-FLIP1,'.

Theorem 2.13 1. AfCl-FLIP;o, is PLSpot-complete aia LLS-reductions.

2. AfCr -Fltp is PLS-complete uia PLS-reductions.

Pnoop: It is easy to see that AfCr-Fttpro.q is in PLSp't and,A,[C1-FLIP in 215. Now
to the hardness results. Theorem 2.12 implies that unweighted \,{ax Cur is PLSp't-
complete vta LLS-reductions. The LLS-reduction from MRx Cur to AlCl-Frwtoe corr-

sists first of a mappitrs "f from a graph G to a circuit C computing the cost of a cut in G
(given an input coding this cut). Clearly G has the same iocally optimal solutions as C.
Tlre reduction consists of the mapping / and a mapping g defined by g(t,u ) : s.

The circuil C can be a AlCr circuit, because the cost of the cut can be computed
by a layer determining the weights of external edges, and a circuit summing these (in
functional AlCl due to facts 2.512.4). The cost function is polynomially bounded, and so

C is an instance of AlCl-FrrP6n. C can be constructedin LOQSPACT due to fact 2.5,

leading lo a LLS-reduction.
PLS-completeness was proved for unbounded weight Max Cur in [SchY91]. The

same argument as above yields aPLS-reduction to,A/C1-Fr,rp. !
This subsection concludes with a list of completeness results ([SchY9l
Unweighted or polynomial weights;

PLSPot-complete
A[C'-Frte6n
Max Cur
It{ax 2-Sar

Unbounded weights;

P LS-complete
Af C'-Fup
Max Cur
VIax 2-Sar
TSP, Lin-Kernighan or k-change

Pap92l):

2.4 Approximation of Local Optima
In practical applications local search is often associated with some probabilistic approach.
An initial soiution is chosen randomly and the search for a local optimum begins (im-
proving neighbors may also be chosen randomly). To avoid being trapped in a bad local
optimum this process can be repeated some times. Another variant is the simulated an-
nealing approach that allows search steps that worsen the solution, but decreases their
probability with time thus "annealing" the "temperature" of the stochastic optimization
process. These methods often yield quite good solutions. It is obvious that it makes no
difference if the obtained solution is really locally optimal or if it is as good as a local
optimum one is not interested in the structural property of local optimality but only
in a heuristic for "good" solutions. Fast parallel approximation of local optima would
be a desirable improvement to the exact solution of PLSpot-hard local search problems.
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Note that simulated annealing algorithms also solve their corresponding local search pro-
blem. The interest in parallel computation and the completeness results of the previous
subsection raise the following questions:

r May local optima of interestingPLse''-complete problems be approximated by fast
parallel algorithms (i.e., in functional AfC)?

o May local optima of interestingPLS-complete problems be approximated in poly-
nomial time?

In order to create a general framework for these problems the following definition is helpful.

Definition 2.LG Let L -- (P,C,N) be aPLS problem. The "local perforrnance ratio" of
a.solution s to an instance n of L with "worst" nonnegatiae local optimum C(s.rt(r)) is

in the case of rnarimization

(t
R'f"(r,") : { C(s"r1(r),r)lC(s,r)

I C(s,o1(r), r) + lC(s, z)l + 1

and in the case of minimization

if C(s,r) 2 C(s"ot(r), r)
if 0 < C (s, r) < C (s"r1(r), r)
if C (s,u) S 0 I C (s.r1(r), r)

( 1 if 0<C(s,r)<C(s"r1(r),r)
R'f,'(",r) : { C(s,r)lC(s.o1(r),r) if C(s,r) > C(s,or(r),r) > 0

I C(",2) * 1 if C(s,r) > C(s"rr(r),r) :6

LetAbeanalgorithmthatproducessomefeasiblesolutions"4(o) giuenaninstancer. Ais
called a polynomial time tNf Cl bcal p-approrimation algorithm for a function p(lrl) 2 t
if Rt;"(sa(*),*) < p(lr) fo, all instances r, and A can be implemented on a uniform
polynomial size [and polylogarithmic depth] circuit farnily.

A family of algorithms Ao for euery constant p > I is called a polynomial time tNfcl
local approrimation scheme, PTLAS INCLAS], if each A, is a p-a,pprorimation algorithm
and these algorithms are implernentable on unifom polynomial si,ze [and polylogarithmic
depthl circuit families, where the bounds depend onIlQ-1) and the input length.

Other definitions for local approximation would be possible, for instance demanding
from an approximating solution to have cost really near the cost of a local optimum, or to
be near a local optimum regarding some distance measure on solution vectors. But since
we are interested in good optimization heuristics we chose this notion of "being almost
as good as (or even better than)" a local optimum. We are interested either in designing
fast local approximation algorithms, or in proofs that such algorithms do not exist. For
the latter purpose reductions will be useful again. This time we need a very special kind
of reduction-one that preserves approximability with respect to local optima.

Definition 2.I7 A local performance ratio preserui,ng reduction (LPR-reduction) among
PLS problems L and M is defi,ned as follows: L is K-LPR-reducible to M (L 3f,r*
M ) with size amplification a(n) for a monotone increasing positiue function a(n), if two

functions f , g computable in functional K erist such that
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1. f maps 'instances of L to instances of M,

2. g maps pairs (soluti,on to f (r), r) to solutions to n,

3. for all instances r of L and solutions s to f(r): Rf'(g(s,r),r): O(Rtff(s,/("))),

4 lf @)l -< 
o(l"l)

Theorem 2.14 1. K-LPR-reductions are transitiue for K : LO]SPAC|, K : A[Ck ,

K:NC,K:P.
2. If twoPLS problems L and M fulfi,ll L <{f"M with si,ze amplifi,cation a(n), and

M has a AIC local p-approrimation algorithm for a monotone increas'ing function
p, then L has a AIC local O(p(a(n)))-approrimation algorithm.

3. If two PLS problems L and M fulfill L 1'"r* M with size amqtlif,cation a(n) and M
has a polynomial ti,me local p-approrimation algorithm for a ntonotone i,ncreasing

function p, then L has a polynomi,al time local O(p(a(n)))-approrimation algorithm.

PRoop:

1. Assume L lrpn M lrpn N with functions ft,gt,a1 and fr,gr,a2 for the first
resp. second reduction. Then f : f, o /2 maps an instance of L to an instance of
N. g, maps a solution s to /(r) and the instance fi(r) of M lo a solution to fi(r),
!1 maps this solution and instance r to a solution to r. This defines a mapping g

that produces a solution with local performance ratio

R'f" (g(", r), t)
: o(R'fo' @r(",.f'(")), /'("))): o(ntff(s,t(/,('))))
: o(Rtf,"(s,/(r))).

Thus / and g define a LPR-reduction. The size amplification is a1 o a2. It is

well known that the composition of two LCIgSPACt,NCk,NC,P-reductions is
computable in the same functional class.

2. An algorithm for L works as follows: given an instance r first compute /(z), then
approximate a local optimum with the algorithm for M, then map the obtained
solution s to a solution to z using g. Then

R'f"(g(r,r),r) : o(Rlff (", f (*))) : o(p(lf @)l)) : o(p(a(lrl))).

3. Analogous to 2.

18



Theorem 2.15 1. AfCk-FrrP6n is complete for the A[CkLS'd-marimization problems
ui a Af C - L P R-ru:d uc:tions.

,2. AtCk -FuP is com,ltlete for the AfCk LS-ma,rim. problems uia AfC-LPR-rcrluction,s.

;1. Flrp is completr: for thr: PLS-m,arimization problems uia P-LPR.-redud.ions.

Pnoop: First to the inclusion statements. Clearly the bound on the cost function
in 1. holds. Furthermorc it has to be shown that the thlee algolithms of definition2.I2
belongtofunctionalAlCk (statementl. and2.) resp.functional2(statementS.). Fbrthis
it suffices 1,o show that the cost function is computablc in these classes (given a solution
ancl an insl,ance, i.c., a string and a, circuit). It is well linown that universal circuit families
exist that can simulai,e any cilcuit of size at most c and depth at most d with polynornial
size (in c) and ciepth O(d) (see [Wc87], theorem 8.3). The universal circuits compute thc
cosl, of solutions to Frtp instanc:r:s, while having asymptol,ically thc same depth that the
input circuil,s a,re allowcd to havc. The universal circuit family has polynomial sizc. This
places the cost function in the dcsired class.

Norv to the harclncss lesults. We show how t;o LPR-reduce evely PLS-maximization
problem I t,o Ft tp irt a, way that preserves polynomial bounds on the cost function and
ieacls to circuits (Fr,re-instances) having asymptotically at most the same depth as the
cirr:ttits of the algorithms Ar, Br,, Cr,. This implies the theorem.

Let L : (It,C',N) be some maximizing local search problem ln PLS. First I is
LPR-reclLrced to ;rn intermediate ploblem Q rvith a trivial fcasibility predicate, thc 1-flip
neigliborhood, and only solutions of nonnegative cost. This can be done by a slight mo-
clification of the proof that every PLS-problem can be PLS-reduced to a PLS problem
rvith these pr-operties given in [JPaYSE]. There FLIe rvas defined as a, minimization pro-
blem and its rna,rirnization vcrsion was reduced to 1,his minimization problcm by {lipping
all outpLrt bits of a given cilcuit, a technique that clearly does not, preserve approxima,-
bility. So t,he proof is restat,ed here with the necessary modifica,tions for ma,xirnization,
ancl the necessary observations for showing that this is a LPR-reduction (remembel also
tha1, rve have allowed local sealch problems to havc solutions with negative cost, which
causes some extra trouble). After the reduci,ion to Q it is easy to LPR,-reduce Q to Flre,
bccause all structurc of Q lies in its (nonnegativc) cost function.

Lemnra 2.L6 PLS-marirnization problems L can be P-LPR-reduced to PLS-marimi-
:a,tiort probk:ms Q ruith, triuial feosibility predica,te, thc 1-flip neighborhoorl,, anrl orthl so-
Irdions of lto,sitiue cost, wlLere polynom,ial bottrttls on Lh,e cost funclion u.c preserued. If
L e AlCk LS, tlten Q e AlCk LS a,nil the red.ur:tion is computable in, functionat Af C.

We rnay assume tha1, aii solutions to an instance r of L have thc same length p :
pol'y(lrl) and that no i;wo of them are within Hamming distance 1 of each other. Thc
ncighbolhood can be restricted so that each solution has at most one neighbor, which is
thc one rcturned by algorithm C; from the standard local scarch plocedure implicit in 2.12
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(note that neighborhoods are allowed to be asymmetric). This modified problem has the
same local optima as -L, now these optima have no neighbor. Note that the modification
of tr can be computed in functional LOQSPAC|.

Now the modified problem ,L will be reduced to Q. The set of solutions to /(z) in Q
is {0, I}',*'. The neighborhood is 1-flip. The cost function will be designed such that
only strings corresponding to solutions of nonnegative cost to r tn L are candidates for
localoptimaof /(r) inQ. ThecostfunctionCq of Qisdefinedasfollows(dependingon
tlre cost function Cr of L): Let u be any feasible solution to r with nonnegative cost.

I. uull: cost (2p +5)(Cr(u,") + I) -2
2. uul\: cost (2p +5)(C7(u,") + 1) - 1

3. uu00: cost (2p + s)(Cy(u, r) + 1)

4. uu00, where z is not locally optimal and u is on the shortest Hamming path from u
to its neighbor to: cost (2p+5)(Cy(n,r)+1) -p-h-4,, where h is the Hamming
distance between u and tr.' (h > 0)

5. uu10, u is any string of length p: cost (2p + 5)(C7(u,r) + 1) - p - 3

6. uu71, u is any string of lengthp: cost (2p+5)(Cr(u,r)+1) -h- 2, where lz is the
Hamming distance between u and z.

Every string uuyz of length p+p+ 1+ l that is not in this list has cost p -h+ l for the
Hamming distance h between u and the standard solution u" given by algorithm Ar.

First note that every solution to /(r) has positive cost, because z and u" have nonne-
gative cost, and h < p is always true.

Now consider any solution uwyz to f(r) that is not in the list 1)-6) There is a

local search path from uruyz to uu,17, because Cq(uu,Il,f (r)) > p + 3 due to 6) and

Cg(uuyz,/(r)) - p- h+1 for all u; in Hamming distance h from us. uwyz can be changed
Louu"yz and afterwards to uu"I7 via5) and 6). A solution uu11 (for somefeasiblesolution
zt,lo r with nonnegative cost) can be changed to uz00 via 6) and 1),2),3).

Only solutions zu00 lo f (r) (for some feasible solution u Lo r with nonnegative cost)
can be locally optimal, because all other solutions in the list can be improved. uu00 is
locally optimal (for /(r)) iff u is locally optimal (for r): if u is no local optimum then
uu00 can be changed to ztr00 using 4), to wwII using 5),6), and to totu0O using 1), 2),3).
If u is a local optimum then u has no neighbor u, and uu00 is locally optimal, because
no solution to r is in Hamming distance 1 from z, and thus no neighbor of zu00 in the
list has larger cost than uu00.

Now to the exact definition of the reduction to Q: an instance r of -L is mapped
to an instance /(z) of Q as described: all strings of length 2p + Z are solutions, the
neighborhood is 1-flip, the cost is as just defined. The three algorithms Aq,, Bq, Cq are
easy to derive from that. A solution uwAz to f (r) is mapped by g to w,if w is a solution
to r with nonnegative cost, to ,n/(u) (the neighbor of u in r) if l)uyz fulfills case 4) of the
list, otherwise to the standard solution z" given by Ar. The mappirg "f is computable in
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functional LOgSPACt. S is computable in functional A[Ck resp. polynomial time if Ar,
87, and C7 are. Note that Q e NCk LS if L e AlCk LS, and that a polynomial bound on

the cost function is preserved.
We have to show that Rli"k(uwyz,r),r): O(R?"(uwyz, /(t))) for every solution

uwyz to /(r). Let s"r7(r) and sorl(f(r)) denote locally optimal solutions to r resp. /(r)
with smallest nonnegative cost.

Let s:g(uuyz,r). Then s:LLs implies Cr(*,r) < 0 and 0 <Cq(uwyz,f(r))Sp.
Otherwise s : L0 or s : l/(r). Note that Cr(",") > 0. It will be important that
(2p + 5)(C;(s, r) + 1) : Co(ss00, /(t)) >- Cq(uwyz, f (r)).

Cq(uuyz, f (*))
(2p + s)(c v(s "pt(r), 

r) + r)
(2p+5)(C7(s,r) +1)

C p(s"r1(r),r) + 1 : RIf"(", *).

Cq(uwyz, f (r))
(2p + s)(c7(s"pt(r), r) + 1)

(2p+5)(C7(s,r) + 1)

Cr(sopt(r),r) +1- Into. , \--c;GA+1 t tnt \5t{)'

This proves the lemma.
Now we reduce Q to Fr,rr. An instance r of Q is mapped to a circuit that computes

Cq. This defines the instance mapping /. For every s: g(s,r) : s. This is a LPR-
reduction, because /(z) exactly simulates r. Q e AfCkLS implies that this is a reduction
to AlCk-Frw. Q € AfCkLSp'r implies that this is a reduction to AlCk-Frrc6n. n

Theorem 2.17 1. Local ,kl'-opprori,mation of AfCl-FLIP,r,.7o, solues a P-hard pro-
blem.

2. Local2''n-approrirnation of AlCl-Flrp solaes aPLS-hard" problem (for an €> 0).

3. Local n'-approrimation of a problem that is AlCr LSpoI -hard uia A1C-LPR-red,uctions
solues a P-hard problem (for an € > 0).

/. Local 2"'-approrimation of a problern that is AIC|LS-hard aia P-LPR-reductions
solues a P LS -hard problem (for an , > 0).

I. If C1.(s,r) 2 C;(sopt(r),r) then R'i'G,r) : 1 < R!$'(uuyr, f (")).

2. If C;(s"pt(r),r) > C1(s,r) : 0

R$"(uwa", f (r))

3. If Cy(s.ot(r),r) > Cy(s, ") > 0

Rt$'(uwaz,/("))

then

Cq(s"rt(f (r)), f (r))
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PRoor':

1. Fact 2.9 and theorem 2.13 imply that finding local optima for AfCr-FLrP1,.1on solves a

P-hard problem. We show how a local nkl2-approximation can be used to determine
local optima exactly.

A given logarithmic depth circuit C of stze n with k . log n outputs can be mapped
to a circuit C' that computes the output of C on an input and on all neighbors of
this input. After this C' determines whether its input is locally optimal or not. If
the input is not locally optimal, then C' outputs the cost of the input as computed
by C. If the input is locally optimal, then C' increases its cost to n2k (C' has twice
as many outputs as C).

The test whether one number is the maximum of n numbers with n bits (here we

have only O(log n) bits) can be done in logarithmic depth and size O(n2) by n

parallel standard algorithms for comparison (see [We87]). Thus the size of C'is
O(r'), the depth O(log n).

The construction yields an instance of AlCl-FLIPp.1on, because the size of C' is O("')
and C'has 2klogn: klog(n2) outputs. A (nz7t'/z-upproximation finds a solution
that is locally optimal for C, because local optima of C'have cost n2k and a nk-
approximation must find a solution of cost at least nk. Only locai optima of C'
(and thus of C) have such large cost. Relative to the circuit size m of C' the
approximation has a local performance ratio of mk/2.

2. The same construction as in 1) applied to a logarithmic depth circuit of size n yields
a logarithmic depth circuit C' of size O(n2) again. This time it is possible to use

n2 outputs. Locai optima are increased to cosl 2'. Other solutions have cost at
most2'. Thesize mof C'isO(n2),, thedepthlogarithmic,a2''*-approximationis
sufficient to find local optima (for some e > 0).

3. When a problem L that is AlCl LSpol-hard via AlC-LPR-reductions can be approxi-
mated within n', then AlCl-Frrck.tos cdn be reduced to tr with size amplification nA'

(for some k'possibly depending on k), and can thus be approximated locally within
Olnn''', due to theorem 2.I4. If e< klQk') then this yields urkl'-upproximation
of AlClFLIPplou and solves aP-hard problem due to part 1.

4. If a problem L that is AIC| LS-hard vta AlC-LPR-reductions can be approximated
within 2", then AlCl-Frrc can be reduced to tr with some size amplification n& and
can thus be approximated locally within O(2@^)'1due to theorem 2.14. This solves
aPLS-hard problem for e < If k d:ue to part 2. !

Now we know that complete problems under LPR-reductions exist and have no consi-
derably more efficient local approximation than local optimization algorithms. In section
3.3 we will encounter another problem that is complete for PLS via ?-LPR-r'eduction.
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3 Investigating the Hopfield Energy Function
Remember the definition of Hopfield nets given in section 2.1. The goal of a Hopfield net
is to reach a stable configuration, i.e., a state s in which for any neuron u, and its state s;

the following holds: si:1 <+ D,;;wt,1s1 ) l;. Now consider the following quadratic
expression:

fI[s] : Itr;,rs;s; _ Dtotn.
t1J z

zui,i : w1,; is the symmetric connection strength between u; and u;, and l; is the threshold
of unit u;. The first sum counts every undirected edge once. We now require that for
neuron u; the sum fry; rDi,jsj never equals /;. This can easily be fulfilled by choosing
l; to be .5 larger than an integer and all weights as integers. If neuron ?p computes its
threshold function 0,(*0,r,...,uk,,,14) and changes its state, then the following holds:

sT'- .(D.n,n"n - tn) > r;'o . (t uk,rs,; - tr).i+k i+k

This implies that

Hlt"-l : D w;,is;si _ Dt,to
i<j ;

:ltfr.o;.is;s;-Ir,r,
2??IJTI?

\- ,1a- ) s;( - )] w;,1s1 - t;)? ",2 t.i -i+i
1: t".(; I wi,jsj - t) * tT"*(Dwp,;s; - tp)

i+k " j+i,k i+k

t ;r,(l D .n,,r, - tt) +,"n'o(Dw1,,;s; - t1,)
i+k " j+i,k i+k

: Hlt"d)

Definition 3.1 The function

11[s] : T,*n1"nti -Dtpn
t1J t

is called the "Hopf"eld energy function" for the Hopfielil net (V,E,l) with ?.ni,j : (.({u;,u1})

for {u;,ri} e E and zoi,j : 0 for {u;,ui} / E and tt : t(u;).

Tlreorem 3.L A Hopfield net is in a stable state iff its energy function is in a local
marimurn. Each computation of a neuron that changes its state increases the ualue of the
energy function.

otL.)



IIol;{icld ncts and the energy function are usually defincd di{I'crently in trvo aspects.
Iilst the energy function is often multiplied by -1 in order to iet energy decreasc (I{opfield
ncts rvcrc fir'st intr-oduced by a physicist who did probably not like the idea of a systcrn
stabilizing itself at maximnrn crrcrgy). Wc lcavc the negation out and vierv the energy
function as a maximization ploblem.

'fhc other diffelence concerns the domain of the state variables. Usually {-1,1} is

preler-r-ecl. 'Ihis mal<es the application for associative memory slightly easier. Cleally a

translation between {*1,1} and {0,1} is easy and bot}r energy functions have the same
optima. T'he cli{fcr-cnce is that the translation introduces constants into the funcl,ion
rvhich can br: ornitted if one is only interested in exact optimization. If one r,va,nl,s 1,<r

a.pproximate local opl,inra these constants however become impoltant. We are nol; arvare

of any mechanism tlanslating our lower bounds fol the complexity of approximation ovcr'

{0,1} to 1,hc clomairr {-1,1}, at least not if rve forbid consta,nts in the energy function,
i.e., sclf-loops (since sisrr - 1) in the net. All results for the {0,1}-Hopfield functioir are

valid for' {-1,1}-nets with self loops.
But self loops have brutal effects: it is easy to shorv that thc polynomially rveigh-

ted Ilopfield function over {-1,1} with self loops and only negative rveights cannot
be nA-approximated locally in AfC (unless P : AIC). A slight modification of the 2-
completeness ploof for the problem to find local optima of Max Cur in [SchY91] can

inclucc a tiny gap betr,veen "acccpting" anrl "rc.jccting" local optimu (by adding 1 for
acccpting). Then the overall cnergy can be decreasecl to 0 resp. 1 by a negatively weigh-
tecl sclf-loop. Nou' ali rveighi,s can bc multipliecl by a polynomially large number rvhich
incrcases the gap betrvecn acccpting and reiecting. But this method can clearly not bc
usecl if self-loops are forbidclen-and there is no reason to allow them since they carr-y no

informat,ion. Itor other effects of seif-loops see [Par94].
'lhe reason rvhy lve chose thc domain {0,1} is that the rnain interest in llopfield nets

stems from theil abilities in cornbinatorial optimization. This domain scems to allolv rnore
corrfortable ways of cncoding optimization problems. Both possibilities offer the same
profile conccrning local optima, but whereas the {0,1} domain allows to encode ploblerns
in a rvay that, lhc querlity of approximations is prcservcd, this sccms to be more difflcult
on t,hc domain {-1,1} (examples rvill be given in section 3.2).

Anothcl aspect of Hopfielcl nets is the sizc and the sign of thc rveights. 'fhe Hopficld
cnergy function will be examined with several restrictions: first rvi1,h weights of unit sizc,
polynomial size, unboundecl (exponential) size. This clistincl,ion is important (making a

big difference to acyclic nets, see [Go192]). Sccondly the sign of weights rvill be rcsl,rictecl:
posil,ivc rvcights, negative rvcights, and both. This has an important effect on the com-
plcxity and thc powcr to cxpless probiems, too. Thresholds will not be lcstricted since it
is easS' to see that the or-rly difference rnade by such lestlictions is that thc problem car')

bc lrivialized (e.g. a ne1, wil,h negativc wcights and positive thresholds lhat has only the
vectol of zeroes as local optimum). The differcnt vcr-sions of the Hopfield function rvill be
called P-HoprrnlDlll, N-HopFIELDpo/, PN-HoeFIELD"I, a,ncl so on.

lllhc, rcsull,s of 1,his scction can be founcl in the following t,zrble.
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Max {0,1}- HorEru,o
Dt<; w;,ists1-l;t;s;

Positive Weights Negative Weights Pos./Neg. Weights

l1l-weights Opt.
Global App.

RTC'
n'-App. N L-hafi

NP-cpl.
n'-App. AIP-cpl.

Al-P-cpl.
n'-App. AfP-cpL

l1l-weights Opt.
Local App.

RTC'
n'-App. d ACo

P-cpI.
?

P-cpl.
n'-App. 4 ACo

pol.-weights Opt.
Global App.

RTC,
n}-App. NL-hard

AfP-cpl.
n'-App. Al'P-cpl.

AfP-cpl.
n'-App. AfP-cpl.

pol.-weights Opt.
Local App.

RTC'
ne-App. l-hard

P-cpI.
,/

P-cpI.
n}-App. P-cpl.

exp.-weights Opt.
Global App.

P-cpl
2'-App.AlL-hard

NP-cpl.
n'-App. AtP-cpl.

NP-cpI.
2'-App. AfP-cpI.

exp.-weights Opt.
Local App.

P'cp\.
2'-App. NL-hard

PLS-cpl.
?

PLS-cpl.
2n'-App. P LS-cpl.

n denotes the number of vertices of the Hopfield net, e a positive constant, and k an

arbitrarily large positive constant depending on the polynomial bound attached to the
weights. "Opt." denotes the complexity of computing optima, "App." of approximation.
L and NL abbreviate LO7SPAC| resp. Af LO7SPAC]. The name of a complexity
class stands for an algorithm solving a problem with the complexity of the functional
equivalent of this class, ".p1." means that an additional hardness result exists, "hard"
indicates a hardness result.

The most interesting open problems concerning this table correspond to the question
marks. We are not aware of lower or upper bounds for the approximation of local optima
for the negative weight Hopfield function, although we conjecture that it can be appro-
ximated in functional AIC resp. in polynomial time because it seems to be very hard to
code even trivial decision problems using N-HopnrBlt.

The following subsections prove the propositions in the table. Note that the third
column of the table "inherits" Iower bounds from the other two. Moreover it is clear that
iocal optimization is at most as hard as global optimization.
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3.1 The Positive Weight Hopfield Function
In this subsection the Hopfield energy function restricted to positive weights is investiga-
ted. This restliction implies that every neuron computes a monotone threshold function.
Local search has a monotone property, too: it is possible to perform local search by star-
ting from the vector of zeroes and changing states of neurons (correctly) from '0' to '1'
until a local optimum is reached. Note that positive contributions to the energy function
come from edge weights and negative thresholds, whereas positive thresholds contribute
negatively to the energy function.

Units with negative thresholds are in state 'f in any local optimum. A net with only
nonnegative thresholds has a trivial local optimum: the vector of zeroes. Thus units
with negative thresholds are necessary for nontrivial local optimization. The size of the
negative threshold on the other hand is not so important: it only adds a constant to
the energy of all local optima. We will call units with threshold -1 "starting buttons",
because they force the net to start a desired computation. We say that a unit is "turned
on" when it changes its state from'0'to'1', in the opposite case it is "turned off".

Now we establish a strong connection of the positive weight Hopfield energy function
to the s,l-lVIlN Cur problem and deduce the complexity of global optimization from
this connection (note that s, f-MIN Cur is defined on directed graphs and minimizes the
weights of edges leading from the side of a vertex subset s (here defined as'1'), to the
side of a vertex subset I (here defined as '0')).

Theorem 3.2 1. The s,l-\4IN Cur problem with positiue weights can be solued by a
positiuely weighted Hopfi,eld net, i.e., s,I-MIN Cur(22s P-Hopptnlp.

2. P-HopFIELD(aa5 s,l-\4IN Cur.

PRoop:

1. Let G be any directed graph with weighted edges, and let s,l be two vertex subsets

that must be separated by a feasible cut. First neglect s and I and consider the
following expression for the minimization of the cut (y denotes the sides of the cut):

minCUT(G) : minlwlt,TA;(I - yi)
(i,i)

: max D*<o,l(yiy j - ai)
(i,i)

: max l(w1ti1Aty1 - w1t.,flAt)
(i,i)

: maxl(.t',;l * w(i,;))y;y, - D,(
z1r i \;

t ,,0,r,) ,,.
:(i,i)eE I
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Finding a minimum cut is equivalent to maximizing the Hopfield energy function on
a net that has the samegraph structure (though undirected edges), as edge weights
?t)i,i : u1;,1lwU,;), and as thresholds the summed weights on edges leaving a vertex
(observe that computing the sum of weights requires LOgSPACt redrctions). But
since all the thresholds are positive the vector of zeroes is locally optimal and we
have neglected s and I so far. Assign threshold -1 to all vertices in s and threshold

Diwp,11* 1 to vertex u; in t. Now in every local optimum of the Hopfield net all
vertices in s have state'1', all vertices in I have state'0'. All other vertices behave
like the MtN Cur problem demands. The Hopfield net and the s,l-MrN Cur
instance have the same locally (and globally) optimal solutions. Unfortunately the
reduction does not preserve approximability.

2. Take any positive weight Hopfield energy function 11. We will implement the cor-
responding net on an undirected s,l-\4tiv Cut instance. Note that a Hopfield net
with threshold f i7; ui112 for unit ui corresponds to undirected MrN Cur: undirec-
ted graphs are equivalent to directed graphs with edges from u; to u; and from u, to
u; instead of an undirected edge between ui and ui. The noted connection between
undirected VfiN Cur and the positive weight Hopfield function follows from the
equations in 1.

We introduce two new vertices ul and u0 into the net fI that will be forced to belong
to different sides of a feasible cut (by the s,l condition). The side of u1 defines the
state'1', the side of u0 the state'0'. These vertices will be used to turn thresholds
into edges resulting in a s,l-MIrv Cut instance.

If a vertex u; of the Hopfield net 11 has threshold l; <Li+nwt,il2, then connect u;

to ul with weight D17;u;1 - 2t; andchange the threshold to Di4tw;,1- f;. If ul is
in state'1' then this does not change the computation of u;, because

inputn"- - tT'* : input + (t u)i,i zt;) - (D*,,i - t) : input - t;.
i+i i+i

Now the threshold t!'- ts exactly one half of the sum of edges incident to u;.

If a vertex u; of the Hopfield nel H has threshold f; >Li+ow;112, then connect u;

to u0 with weight 2t;-D.;+tT.r.r;,i and leave the threshold unchanged. If u0 is in state
'0', then this connection adds nothing to the input of u;, but makes the threshold /;
one ha,lf of the sum of edges incident to u;.

The computation of 11 is unaltered, but all units act as in Mtw Cut, except of u0

and u1. Now remove the thresholds, take the weighted graph, use s : {u1} and
t: {ro}. These two vertices are on different sides in any feasible cut. Now finding
a locally (or globally) optimal s,l-MIN Cur determines a locally (resp. globally)
optimal solution to the P-HoprrnLD instance.Il, where the side of s : {u1} defines
the units in state '1', the side of l: {ro} defines the units in state'0'. n
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Now we know that local (or global) optimization of P-HoprrnLD is as hard as opti-
mization of s,I-MIN Cur. This establishes the following:

Tlreorem 3.3 1. Finding a global optimum o/P-HoruELDlll is ltossible in functional
RTC|.

2. Fi,nding a global optimum o/ P-HoeErBLDpot i,s possible in functional RTCr .

3. Finding a global optimum o/ P-HoerrELD't:p is possible in polynomial time, and
solues a P-complete problem.

PRoop: In the proof of theorem 3.2 it was shown that finding global optima for P-
Hoprtuo is possible by finding global optima for s,,f-Mrrv Cur (using a LOQSPACT-
reduction). There is a well-known connection between s,l-MtN Cur and s,l-Max Flow:
both have the same instances, and global optima of the two problems have the same value
on the same instance . Moreover) given a globally optimal solution to a s,l-Max Flow
instance, one can obtain a globally optimal feasible minimum cut by breadth first search
(see [VL90]), and thus in ACt (see [KarRa90]).

It is possible to find a globally optimal s,l-Max Flow in functionalZcTCI (see
section 4.1) in the case of polynomial weights. Thus the first two statements of the
theorem follow. In the case of exponential weights global optima of s,f-Max Flow (and
thus of P-HopEInLD) can be found in polynomial time (see [VL90]).

Determining the value of the global optimum for unbounded weight s,l-MRx FLow
is known to solve a 2-complete problem (see [KarRa90]). The second part of the third
staterrent holds, because this value can be found by global optimization of P-HoPFIELD""p
(and with this of s,l-MIN Cur).

It is unknown whether locally optimal solutions may be found faster or without the
randomization in the case of polynomial or unit size weights. In the case of exponential
weights this task is not easier.

Theorem 3.4 Finding a local optimum of the Hopfield function with posi,ti,ue erponential
weights solues a P-complete problem.

PRooE: The MolroroNE CrRcurr Valun PRosr,BN{ (see [J90]) is 2-complete. Gi-
ven a monotone circuit C of size m with fan-in 2, fan-out 2, and an input s, build a
Hopfield net 11 consisting of rn units simulating the m gates. The internal gates of the
circuit are assumed to be given in topological order.

Let W : 4^, The units for the input gates of the circuit have threshold -1 if their
input bit is I,W olherwise. The unit for internal gate i has threshold2Wlat - l for an
AND-gate andWf 4i - 1 for an OR-gate. The graph structure is the same as the graph
of the circuit (directed edges are replaced by undirected edges). Edges leading into unit
i are weighted with Wl4o.

Now local search is forced to follow the computation from the inputs to the outputs:
changing unit i to the correct value of gate i gains more than it can lose on the units with
higher numbers.
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Considcl any situation supposed to be a local optimum. Units simulating inputs
clcarly have the correct state, because a -1 threshold allows to turn a unit on, rvhereas

a, IV l,hleshold ca,nnot be exceeded and units with this thr-eshold are off.
Nor'v to the units simulating t,hc internal gates of the circuit. A "plcdecessoL" of

unit rl is a unit simulating a pt-eclcccssor of gatc i in C. a, "successol" of unit i is a unit
simnlating a, succcssor of gate i rn C. A wrong state of a unit simulating an OR-gatc car]

be corr-cctc<l by local search, because with one predecessor in state'1'the threshold of the
urrit is exceeded lvhile with two successols in state'1'thc thresholcl is not r:xceeded. A
\vlong state of a unit sirnulating an AND-gate can be corrected by local seaLch, bccause
rvith tivo predecessols in state'1'the threshold is exceeded and rvith one predecessor

logc1,her rvith two successors in statc'1'the l,hreshold is not exceeded. Thus in a loczrl

optimum all units have the correct values of the corresponding gates and the Z-complete
lvlouoroxri CIRCUIT VRt uo PRoeLBx'I is solved, i.e., the circuit output can be read off
h'om thc locally optimal state of the Hopfield net. !

It is possible that global optimization has the samc complexit;y as local optirnization
in the case of polynomial weights, too. This is not imrnediately clear since it is czrsy 1,o

construcl, nets rvhere local optirna do not cven apploximate global optima. 'l'hus lociil
optimization could be easicr. But, the following lowel bounds for local approximation are

rather tight in the case of polynomial r,veights (theolem 3.7), so that one can say that
local optimization (which is at least as hard as local approximation) is practically as hald
as globai opl;imization for P-HoprInlo.

Now to lowel bounds for local approxirnation on the three sizes of rveights.

Theorem 3.5 The Hopfield function with posi,tiue weigh,ls of rLn.it. size cann,ot be appro-
t:int,aLed locally uith.in, Ji lS in fttnctional ACo.

PRoot: 'I'he lvlarontrv function (rvhich is true on ?n, bits iff at least mf2 ol them
are 1) cannot be computcd by an unbouncled fan-in circuit family of polynomial size and
constant dcpt;h made of AND, OR, and l{OT gates (see [We87], p.333), even if this family
is nonunifolrn. We rvill show horv to construct positive weight Hopfield nets r,vith a, lalge
gap in the energy function between local optirna that "accept" a stling for MaloRttv,
and those that, "rejec:1,". This gap stavs quite lalge after apploximation. It is impossible,
lrolr,eveL, t,o cvaiuate the energy function tn ACo to decide Ma;ontry.

A plobabilistic constant dcpth cilcuit family can sepa,r'ate, given approximating states
of thc, Ilopficld ne1,s, "accepl,ing" frorn "rcjccting". The probabilistic circtiit family leads
to a cletermirristic nonunilorrn circuit family for MRToRITY, if a ACo larnily, ol rrlore
genelally, a family of polynomia,l size, constant depth AND/OR/NOT circtiits, is ablc to
approximate P-HopFIELDlll rvithin Jil5. This leads to a contracliction with the lowcr
bound for \{AJoRITY.

Let rr be a string of length m. The Hopfield nct rvill be called 11-. For ea,ch appearance
ofaIinr1,hereisaunitrviththreshold-0.5,forcachappearanceofa0aunitr,vith
threrslrold L: nt'|. Thcse units are not interconnected, but they are completely bipartite
connectecl l,o tn2 (not interconnected) units with thleshold mf2 il rn is not divisible bv
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two, else with threshold (nz - 1)12. These units will be referred to as "counters". Edge
weights are 1.

Now in a local optimum clearly all units of the first class (representing the input r)
that correspond to ones in r are on, those that correspond to zeroes are off. If at least
mf2 tlntis of the first class are on, then the counters are on, too. If less than mf2 units
of the first class are on, then the counters are off. Note that the local optimum is unique
in both cases and thus also globally optimal.

A solution approximating the unique local optimum within performance ratio mf 3

clearly never contains a unit with threshold I in state'1'. If r f MaronITY, then such

a solution can contain at most m counters in statetl', because each counter that is on

loses at least .5, and more than m of them in state '1' would imply a larger performance
ratio than m/3.

If r eMnroRITY, then turning on a counter gains at least .5, so all the (edges to)
counters gain at least .5rn2, while the other units gain at most .5rn. Thus at most a
fraction of llm of the overall energy is gained by the thresholds of the units that code

the string. AmlS-approximating solution must have at least 3lm of the optimal energy,
at least 2lm of this energy must be gained by (edges to) counters. This is at least the
gain of (edges to) m2.21*:2m counters. At least 2m counters must be on.

Consider the following probabilistic algorithm A for MaloRI:rv:

e Construct the Hopfield nel H^.

r Find amfS-approximating solution lo H^.

o Choose mf 2 cornter values cr;. ..,c^12 independently.

o Output OR(c1 ,...,c^/z).

This probabilistic algorithm can be performed by a probabilistic constant depth, po-
lynomial size circuit family made of AND, OR, and NOT gates if a circuit family with
the same limitations exists that performs step 2. The probabilistic circuit family can be
turned into a deterministic circuit family with the following fact (from [We87], p.356).
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Fact 3.6 Let C be a probabilistic circuit with arbitrary fan-in, size r, input size n, depth
d, and the following connection to a decision f on inputs r:

problC(r):11/(z) :11 > I * -]- A probfC(r) :11/(') :0] < :rJ\"-Zlog(n)'Lrr\'-'-2

Then a deterministic circuit of size O(n6log2(n)r) and depth O(d) erists that computes

f . The construction does not preserue uniformity.

Consider a circuit of the family A. Let c; be the random variable that is 1 when the
ith chosen counter is on, and 0 otherwise. Then the probability that the circuit outputs
1 instead of 0 (< m counters are on) is

probf! c;:I]<D prob[c;-1] : mlz.#:i
ii

The probability that the circuit computes 0 instead of 1 (> 2m cornters are on) is

/ ^^^2 ^-^^\ 
m12

prob[!; c; : 0] : l[ prob[.; : 0] < M. - LrrL \

,\m2)
/m - 2\^lz /m - l\-( - ) .(. 

- /
.l.o.rz

e

Thus the probability of correct acceptance is larger than 0.63. The conditions to fact 3.6
are satisfied, and thus a polynomial size, constant depth, unbounded fan-in circuit family
made of AND, OR, NOT gates exists that decides MaroRtry if such a circuit family is

able to approximate P-HoppIELD. This contradicts the lower bound we referred to. The
net H^ has size n:m2 *m,alocal 1/il5 <JZ*'15 <mf3-aproximation suffices. !
Theorem 3.7 A local nk -approrimation of the Hopfield function uith positiue weights of
polynomial size solues a LOQSPACT-hard problem, when weights of size nk*r are allowed.

Pnoor': Take any language tr in LO]SPAC7. Then a Turingmachine M deciding tr
exists that has the following properties:

I. M uses O(log n) workspace.

2. M has one unique accepting configuration acc.

3. Every configuration of M has exactly one successor, acc is its own successor.

The second property may easily be fulfilled by forcing the machine to clear its tape
and move to a distinguished tape position before halting, resp. starting the accepting
loop.

In the following a Hopfield net with polynomially bounded size and weights is con-
structed that simulates the computation of M on an input string r. The first step is the
construction of a computation graph of M on r.
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Lernrna 3.8 ,4 word r can be mapped to a directed graph Gu,, of polynomial size with
outdegree I and two distinguished uertices start and acc, such that a comltutation of M on

r corresponds to a path beginning al start. This path reaches acc iff r e L. The mapping
is computable in functional ACo.

Take a vertex for every configuration of Mri.e., every state of M and its workspace.
The set of vertices has size m polynomial in lrl, because the workspace is logarithmicaliy
bounded (in lrl), and the tape-alphabet as well as the set of states of M has constant
size. Now connect every ordered pair of vertices if the configuration corresponding to the
second vertex is the successor of the configuration corresponding to the first vertex. This
can be done in parallel and in constant time. start is the vertex of the start configuration
(on r), acc of the unique accepting configuration. Every vertex has outdegree 1, because

M is deterministic.
Clearly the path in Gu," beginning at start corresponds to the computation of M on

r;. If acc is reached, then it is reached within rn steps, because otherwise the machine gets

into an infinite loop earlier and cannot reach acc anyway.
Now the graph G v," is mapped to a Hopfield net that is able to find paths in directed

graphs with the property that every vertex has outdegree ( 1.

Lemma 3.9 Gtr,, can be mapped to a Hopf"eld net Hu* of polynomial size with positiue
polynomial weights, that possesses only one local optimum. This optirnum corresponds to
the path in Gnr,, beginni,ng at start. The maqtyting is computable in functional ACo.

Let W : (m2)k+t (k > 0 is a constant). Hx,1,, is described by a matrix of rn rows and

m columns. Each column is a copy of the vertices of Gm,,. The directed edges of Gm*
are replaced by undirected edges between neighboring columns. Formally the set of units
is 7 : {rn,rl0 < i,j 1m - 1}, the edge set is E : {(uo,i,u;+r,r)l(r;,rn) is an edge in
G u*\ .

Each column is going to represent one time step in the computation of M on r. In
the Oth column we want the copy of start to be on, in the ith column the copy of the ith
successor configuration of start.

All units in column i have threshold W - 2i, all edges between column i and i + 1

have weighf W - 2i - 7. A first exception is the unit u6,5131t corresponding to the start
configuration in column 0, which has threshold -1. This unit will be the starting button
of the net. The second exception is the unit u--1,r.., the mth copy of the accepting
configuration, which has threshold 1.

Now consider the local optima of Hy,,. Obviously the set of units in state 'f in
any configuration can be partitioned into a set of trees (since the whole graph has this
propelty, too). The weight of any edge (u;,;, u;+t,n) is larger than the threshold of u;11,p,

but smaller than the threshold of u;,;. Thus if u;,; has no neighbor in column i - 1 which
is on, then turning ui,j off gains the threshold of u;,1 and loses the weight of the single
edgefromu;,1 to columni+1. Thisoperationclearlygains. Turningonu;11,4if u;,;ison
clearly gains, too, because the gained edge has larger weight than the threshold of u;11,4.
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start, -1 ---+

<- 1, acc

In this way a path of vertices in state '1,' tn H14,, can be "extended" to the right by
turning right neighbors on, and can be "deleted" from the left by turning its leftmost unit
off. This holds for every path except the one starting at us,5s31s, which is the only unit
that does not cause costs (the starting button).

To conclude: In column 0 only us,s13y1 is on, and only the units in the unique path
beginning &t u6,s1s11 and leading to the right through all columns are on.

Lemma 3.IO Hp1," has a unique local optimum that corresltonds to the path in Gp1,,

beginning at slarl. If this path reach€s acc, then the olttimum has energy larger than
m2k+1 , else it has energy m. Any state of Hy,, that is not a path from starl to acc has

energy at most m.

Only states of the Hopfield net, where all units in state'1'form a path beginning
at u6,513p1 and leading to the right, have positive energy. Evely other state loses more
with thresholds than it gains with edges and has thus negative energy. A state of H^,,
corresponding to a path that begins at u6,5s31s has energy equal to the path's length*I.
Only if the path reaches um-7,?cc an additional gain is made: The edge gains I4l - 2m * 3,

the unit costs 1. Thus an "accepting path"-state has energy

(^ - 1) + (W - 2m+ 3) - I : W - m * I > m2k+1.

Any other state has energy at most m, because it loses at least as many thresholds as it
gains edges.

Thus a local optimum of Hx,1,, has energy larger than m2k*1 if r € tr, and energy at
most rn if r / L. A nk : mzk-approximation (n : m2 is the size of the Hopfield net)
of a local optimum of the Hopfield energy function with positive polynomial weights is
sufficient to find out whether r € .L or not. In the case of acceptance the approximating

.J 
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state must already be the local optimum, because this is the only state with enough energy
to approximate within the demanded local performance ratio. Such an approximation
solves a LOQSPACT-hard problem, because given an approximating state-vector one

can easily test whether it represents a path from uo,start to u--1,366. !
The previous result shows that local approximation cannot be done below ,4C1 (assu-

ming the hierarchy of complexity classes inside "A/C shown in fact 2.4rs strict), whereas a

global optimum can be constructedtnRTCI. These bounds are vely close. An interesting
open question is whether a Al'C algorithm may find or approximate local optima.

If the weights are unbounded the lower bound can be improved slightly.

Tlreorem 3.11 ,4 local 2-approrimation of the Hopfield energy function with positiue
weights of erponential size solaes a Al'LOOSPACt-hard problem.

PRoon: Let L be any language in AILO]SPAC|. Then a nondeterministic Turing-
machine accepting ,L exists such that the following holds:

I. M uses logarithmically bounded workspace.

2. M has a unique accepting configuration.

Lernrna 3.L2 Giuen a string r a digralth Gv,, can be constructed i,n ACo where Gu,, has
polynomial si,ze, euery aerter has indegree at most 2 and outdegree at most 2, and there

are two distinguished uertices start and acc, such that r € L iff a path from start to acc

erists.

First take the configuration graph of M on input r. Every configuration has at most
a constant number of predecessors and successors since the numbers of changes a Turing-
machine can produce in one step is bounded. For the graph G,11," indegree and outdegree
arereducedto2 byinsertingtrees. Thesizeof Gy,,ispolynomialinlrl sincethework-
space ol M is logarithmic in lrl. start is the vertex of the start configuration (on r), acc

of the unique accepting configuration. If r € tr, then a path exists that begins at start
and reaches acc within rn steps. The problem to find such a path is called the GnapH
AccnssrerllTy PRoeLBN{ (see [J90]).

Lemrna 3.LB Gm,, can be mapped to a Hopfield net Htt* of polynomial size that has
positiue weights and only one local optimum. This local optimum corresponds to all paths
in Gu,, that begin al start. Finding this optimum simulates the nondeterministic compu-
tation of M on n. The mapping is computable in functional ACo .

Let W : 4^', where m is the size of Gttt,,. The Hopfield net is described by a rnatlix
of m rows and rn columns plus one additional unit. It has basically the same connections
as the net of theorem 3.7. Every column is a copy of G7,1,,. Edges connect neighboring
columnsonly.FormallythesetofunitsisV:{rn,il0<i,j<m-1}andtheedgesetis
E : {(rn,i,u;+t,r")l(ri,r*) is an edge tn G1a,,}. This time however we need one additional
unit that is only connected lo ?t^-y,ssg.
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The thresholds and weights are chosen somewhat differently than in the construction
of theorem 3.7, because the net will compute in another way. A local optimum will not
represent the successors of start, but the vertices that are not reachable from start. The
columns will again correspond to the timesteps of the computation of M on r. The unit
u;,, will be on in a local optimum iff ui in Gtt* is not reachable from start in at most i
steps. A vertex (except of start) is not reachable in at most i steps iff all of its predecessors

are not reachable in at most i - 1 steps. Thus u;,i must compute a logical AND on its
neighbors in column i - I: if these are all on, then ui,j can be turned on.

The edges between column i - 1 and i have weight W l4o . The thresholds of the units
in the first column are all -1 except of unit uo,start that has threshold IV. All other
ui,start have thresholdW, too. All u;,y, where u; is different from start and i > 0 have the
following thresholds: if u1 has indegree 0 in GM,,, then u;,7 has threshold -1. If u; has

indegree \ in Gy,", then u;,i has threshold Wl4i- 1. If u7 has indegree 2 in Gxa,,, Lhen
u;,i has threshold 2Wl4i - 1. The additional unit that is connected to u--1,r.. will create
the approximationgap. It has threshold 1 and its connection has weight Wl@*).

A local optimum of Hm," has the following properties: Ail units in column 0 are on
except the one corresponding to start. Every "indegree O-unit" in every column is on,
every copy of start is off. Every unit in column i with all neighbors in the left neighbor
column in state'f is on. No unit with at least one of these neighbors in state'0'is on.

This holds since any unit may change its state independent of its right neighbors. If
a indegree 2 unit in column i is on, but one of its left neighbors is not, then turning it
off gains the threshold of 2W l4i - 1 and loses at most one edge to column i - 1 and two
edges to column i + I. The edges have weight

wl+i +2. wf|i+t : (r + t 12). wl4i <2wl4i - t.

If a indegree 1 unit in column i is on, but its left neighbor is not, then turning it off gains
the threshold of Wl4o - 1 and loses at most two edges to column i + 1. The edges have
weight

2Wl4i+t : 1 12. Wl4' < Wl4i - t".

On the other hand turning on a unit with all left neighbors in state'1'gains 1.

So in a local optimum state 'f is assigned to all units u;,7 such that configuration uj
is not reachable in k ( i steps, '0' to all others. The statement clearly holds for column
0 and all copies of start. We can assume it true for all columns up to i - 1 and conclude
for column i that all "indegree 0 units" are not reachable ('1'), all other units are not
reachablein(istepsifftheirneighborsincolumni-lareallnotreachablein(i-1
steps. This also implies that the local optimum is unique.

Lemma 3.L4 Hxa,, has a unique local optimum of energy Q(2Q^2-z^)) if r ( L and,

energy O(2m2) if r e L.

If z € .L then a path exists from start to acc. Then the local optimum marks this
path (and um-1.,acc) with zeroes. Il r / tr then no such path exists and um-r,acc is not
reachable and thus set to '1'as well as its neighbor in column m. Thus if r € I then the
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energy is less than nr,2 (a unit, and i1,s inciclent cdgcs lcading to the left contribute at mos1,

1), other.r,vise at least (from the rightmost edge)

Wl4- :4^'-" - i2m2-2m.

Again a vely poor local approximation of the Hopfield enelgy function solves the
language problem: if t,he a,pproximation has ratio 2" - 2^'+t then r I l, implies encl'gy
largel tl'ran 2(-'-2nt-1), r e L implies energy at most m2. Any state that has exponentially
lzlrgc cnergy horvever must represent a correct compul,ation in so fa,r' that no unit in the
rnal,r-ix is on that should not be on. To see this assufile some unit woulcl bc on illegally.
In tlrc case of a unit with threshold I4l this would lose at leasL Wf2. In thc case of a
rrnit rvitlr thresholcl l4rf 4i this rvould lose at least 1/2 .14/14' - 1. The unit in coiumn rrr

costs only 1, but gaining its edge requires to tuln Dm-7,acc on a,nd doing this ivrongly is

erpensive.
Every state that has exponential cnergy contains urn-1,acc and its light neighbor in

sta,te'1' (corrcctly), bccause the edge between therr offels the only possibility to achieve
that high cncrgv. Evcly state that has no exponential enelgy docs not c:ontain um-1,dcc

in state'1'. This irnplies that testing a single bit finds rvhether thc encrgv is exponential
ol not and thus dccidcs thc larrguage ploblem. n

Tlris result is inl,cresting since Af LOgSPACt-hardness excludes a AlCr algorithrr
morc sc(:rlrely than LOgSPACt-hardness. Another aspect is that the nondeterminisrn
of AfLOQSPACT alloi'vs to exclude a very fast landomized algolithm, i.e., a RA|CI
algolitlrrrr, because RA|CI is probably smaller then AILOgSPACS.

An intelesting observa,tion is that the irnplicitly used Af LOgSPACt-cornplete pro-
blem is evaluation of a polyrronrial size circuit corrsisi;ing of Al,trD-gates only (which is the
same as {inding out whcthel an input 0 is connected to the output of a cilcuit). This
problenr can be implemented on a positive wcight Ilopfield ne1, in a way such that the
possible gain from turning on a unit is bounded and a gap can be produced that exceeds
the gain of the whole computation, but is itself exceeded by the loss of any severe mistake.
C)onversely it seems to be difficult to express OR-Gatcs using only positive u'eights in a

'nl'ay such that the gain at every gate is bounclecl. 'I'hc reason fol the construction usirrg
a matrix is that it is irnpossible to find out the depth of a gate vcry fast.

To cornpiete the picture global approximation is considered, 1,oo.

Tlreorerrr 3.15 1. A global ,,t13 f 2-approrimation of tlte Hopfietd energy fttnction utith,

positiue uteigh,ts of unit size solues a AIL?gSPACt-hard problem.

2. A global nk-approrimat,i.on of the Hoplirld energy fiLnctiott uith positiue weights o.[

polynornial size (bounded by n?k) sohtes a Al'L09SPACt-h,ard problem.

3. A global 2-approrimation of the lIopJield energy fttnction uith, positiue weiglfts o.[

crponr:rt,Liul sizc solues a Af LOQSPACT-lt,ard problem.

Pnoor: It was shor,r,n in lemma 3.12 1,hat the GnapH AccESSIBILITy Pnonl,nlr is

Af LOgSPACt-compicte: given a clirected acyclic graph G r,vith rz, vcrtices, m edges, or.rt,-
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and indegree at most 2, and given two vertices s,l, find out if a path fi'om s to I exists. To
solve this problem by globai approximation of a positive weight Hopfield function we use

a simulation of s,I-MIN Cur. Note that the globally optimal minimum cut has a value
of 0 if no path from s to I exists, and a value larger than the least edge weight otherwise.

Let W : nft (for some constant ft ) 1) in the case of polynomial weights andW : 2 in
the case of exponential weights. For the Hopfield net 11 take the graph G, change directed
into undirected edges, weight all edges with tr4l2, assign threshold outdegree6(u;) .W2 to
every vertex u;, threshold outdegree6(s) 'W2 -W to s, threshold W3 to t. outdegree6(u)
denotes the outdegree of u tn G.

Nor,v the vector of zeroes is clearly a local optimum. The thresholds are chosen almost
as in the simulation of directed s,f-Mtiv Cut, where'0'and'1'define the sides of a cut.
It is easy to see from the proof of theorem 3.2 that the energy of a state is the negative
sum of those external edges that replace directed edges in G leading from the side of'1'
to the side of '0'. An exception is made at s and l.

Turning s on does not cost the weights of all edges starting at s, but W less than
that. 'Iurning on I is very expensive, thus I is in state '0' in any optimum of H. The only
possibility to achieve positive energy is to turn s on and gain W from its incident edges,

since all other units have thresholds as large as the edges starting at them, and thus every
gain from an edge is lost by thresholds.

If a path fi'om s to I exists in G, then every state y of 11 has energy at most 0, because

every cut in G separating s from I costs at least one edge, so that y has energy less than
0, and every other cut puts s on the side of I (in state'0'), so that no positive energy
is possible. If no path from s to I exists in G, then a cut in G exists that separates the
vertices in the transitive closure of s from l, and that costs no edge. This induces an

optimum of fi with energy I4z (gained at the edges incident to s).
In the case of unit weights take the previous construction for polynomial weights

(k : 1) and replace edges as follows:

l"a

The intermediateunits have threshold 1, all other units keep their threshold. The new
Hopfield net H' has the same global optimum as 11, since all intermediate units can be
set to 'f iff both of their neighbors are in state '1' (this does unfortunately not work for'
local optimization). The size is increased to 1/ : n * mn2 1n *2nn2 ( 3n3.
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In the weighted case a W-approximating solution is already optimal, because the least
nonzero energy difference between two solutions is W and the global optimum is W.
In the unweighted case observe that the graph which replaces a weighted edge may be
viewed as one edge that is external iff both "original" vertices are in different states. This
edge "weights" Iy'2l3 for the new net size /y' (the optimum is lrrt/'). So u l[t/t/2 < n-
approximating solution must equal the optimum on the "original" vertices. !

As shown above finding local optima of the positive weight Hopfield function is practi-
cally as hard as finding global optima. In addition to that even local and global approxi-
mation have almost the same complexity as global optimization in the case of polynomial
weights. Thus local approximation may be not too interesting for this easy variant of the
Hopfield function. It remains as open problem whether the positive weight Hopfield func-
tion with exponential weights can be approximated locally or globally in AlC. Answering
this question would be very interesting since this problem is not parallelizable for exact
local or global optimization.
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3.2 The Negative Weight Hopfield Function
When the Hopfield energy function is restricted to negative weights then negative thres-
holds contribute positively, edges contribute negatively to the value of the energy function.
Positive thresholds are useless because they cannot be exceeded. We show how to encode
two interesting optimization problems into Hopfield nets with negative weights. First
consider the Mnx Cur problem (defined on undirected graphs).

Theorem 3.L6 1. The Mnx Cur problem with positiue weights can be solued by a
negatiaely weighted Hopfield net, i.e., MAX Cur <aa5 N-Hoprtnr,t.

2. N-HopFIELD (6as MaX Cur.

PRoor':

1. Let G be any graph with weighted edges.

maxCLIT(G) : maxf wi,j[(I - s,)si * (1 - s;)s;]
i<j

: ,Tlu* | D I(-2. i,isis j -l wt,ist I wt,isi)
2L.z .1+r

(D,u-'''') "

: maxf l(-.,n,,)"is., -f IrT!''-DI -!'1
LL? J71 r J+t t J+l

: maxf(-Zw;,)s;s1 -\
i<j i

Thus a Hopfield net with negative weights exists that has the same optima as the
Max Cur instance. This reduction preserves the cost of any cut exactly.

2. Given a negatively weighted Hopfield net 11 add two new vertices u1 and u0 which
will be forced to be in state'1'resp. '0'in a local optimum. If a unit u; has threshold
t; < Di+;w;,i 12, then add an edge from u; to u0 with weight 2t;.-Di+;to;,, and leave
the threshold unchanged. If a unit u; has threshold tt ) Di+tut,i12, then add an
edge from u; Lo u7 with weight Di+;wr,j - 2t; and change the threshold of u; to
Li4;tai,i -t;. This does not alter the computation of the net (as shown in theorem
3.2), But now the threshold of every vertex (except u1 and u0) is one half of the
sum of incident edges and thus we search for a locally maximal cut among these
vertices.

To achieve that u0 and u1 also behave like \4ax Cur demands simply insert a very
large negative edge between them and choose their threshold half the sum of their
incident edges. Now all thresholds can be removed. Negate all edge weights (so that
they are positive). Call this graph G.

A locally maximal cut in G clearly separates u1 and u0. Define the side of ul as

'1' and the side of uo as '0'. This induces a local optimum for N-HopFIELD. The
reduction does not preserve approximability. n
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The pr.oof of l,hc plcvious theorem implies that finding a global optimum for the
rrcgal,ive weight Hopfield function solves a /V2-hard problern, since MRx Cur is knorvn
to be "MP-hard (see [GJ79]). Local scalch is also hard for Max Cur: in [SchYg1] it
rvas shorvn that finding a local optimum solves a Z-liard probiem in the unweighted or
polynomially iveighted case, and is PLS-complete in the case of unbounded weights.

Nor.v anothel famous problem is considered: the InonpeivoENT SET problem. Given
an unclilectcd graph construct a Hopfield net by taking the same graph, assigning rveight

-1 to every cdge and threshold -.5 to evely vertcx. Ciearly in any local optimum no
neighboling units ale both in state '1', since 1,hen turning onc of them off gains 1 fol the
eclge arrcl loses only .5 for the thleshold. Local and global optima of the net correspond
to local a,ncl global optima of the INonpnNDtlNT SET instance. The energy of an optimal
state is half the size of an optimal INuripriNDIiNT SET hence the embedding preserves

a,pploxirnabilitv (this is a S-reduciion).

Theorenr 3.17 1. Itindinq global optima for lY-IIopt'i,eld solues a hfP-hard problem
e'uen in the ca,se of unit weights.

2. l;'i,nding local opt.im,a, for N-lIopfield solues aP-h,ard problcm in the case of 'unit size

and polynorn'ial size weights, and isPLS-com,plete in the case of unbounded weights.

3. Approrimating qloba,l oplima for N-Hopfield uithin n,' for wtit ueigltts, polynom,ial
weights, etrponen,tia,l weights solues a AIP-hard problem (for some e ) 0.

Pnoot,': 'I'hc first two sta,tements have erlready been exa,mined ea,llier on this page.

The thild follows from a ha,rdncss result for INonpnNDENT SET: [BeSc92] showccl that
approximating IuoneENDENT Snr within n' solves a AIP-ha'-d problem (for some con-

stant e > 0) if Mnx 2-Sat: has an approximation thlcshold, i.e., approximating \,tlnx
2-Sar bettel than some constant is ,A,/2-hard. This premiss rvas shown with mcl,hods
lrorn thc area of plobabilistically checkable proof systems (see [AS92] and [ALMSS92]).
Since lvc have just S-recluced IxotPItNDDN'I' Snr to N-Hopn'Int,n (rvith unit rveights).
ploposition 3. is valid. n

The vcry inl,eresting open question is whether local op1,in)?r cerrl bc approxirnatcd casier
than 1,hey can be found. Consider the following scale of ploblerns: t,lrr: I-Iopfield function
rvith negativc rveights of unit size and i,vith the ratio lt,lldegreei: p fixed throughout the
net. If p : 7 /2 thcn 1,his equals the Max Cur problem (and can thus be approximatecl
globaily, but is hard lbr local search), if p :2lclegree; and degree; is fixed throughout the
net, thcn t,his is the INonpENDENT Snr problem on graphs of fixed degree (which cannot
be approximated globaily, but local optima can be found in AfC). Even this restricted
fbrn-r of 1;hr: Ilopficlcl function has the property of being not approxirnable globally and
bcing hard for local search (the speciai property of INtnpnNDIiNT Snr of being easy for
local scarch docs pr-obably not gcncralize t,o an interesting fraction of the whole scale of
problcrns sirrce 1;hc problcms arc in genelal nonrnonotone). This problem would be a very
interesting canclidate for finding a locai a,pproximation algorithm, but unlbr.'l,unatcly we

clo not knor,l, onc.
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Another interesting feature of this scale of problems is the way they can be expressed
with the Hopfield function on domain {-1,1}. The Max Cur problem is expressed by
edge weights -1 and thresholds 0, INonpBNoENT SET by edge weights -1 and thresholds
degree(u) - L. Though it is easy to approximate M.q.x Cur, this seems to be difficult
for the negative Hopfield function on domain {-1,1} with thresholds 0. The known
approximation algorithms for Max Cur do not generalize to a good approximation for
this function. On the other hand the function that expresses INonpENDENT Spt can

easily be approximated: simply set every unit to '1'. Now all thresholds are gained and
their sum is twice as large as the sum of edges. But of course this does not yield an efficient
approximation for INonpnNnENT SET (which does not exist). This is an example of the
way the domain {-1,1} can be rather uncomfortable for an approximation preserving
expression of optimization problems.
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3.3 The Positive and Negative Weight Hopfield Function
We turn to the consideration of the Hopfield function with unrestricted signs on the
weights (note that maximization of PN-HoPFIELD is equivalent to maximization of the
sum of weights of satisfied conjunctions in a 2-DNF formula with signed weights and
only unnegated variables). Of course hardness results that are valid for a restriction on
the signs keep valid.

Theorem 3.18 1. Finding a globally opti,mal solution to the PN-Hopr'rBLD function
solues a AfP-hard problem in the case of unit size weights.

2. Finding a locally optimal solution to the PN-HoprrELD function solues a P-hard
problem i,n the case of unit size and polynomial size weights, and is PLS-complete
in the case of unbounded weights.

3. A global n'-approrimation of the PN-HoprrELD function with unit weights solaes a

AIP-hard Ttroblem (for some , > 0).

PRoop: Follows from the same results in the previous section. tr
But there is still a possibility to strengthen the above result on global approximability

since it is delived from the INnspBI,ioENT SET problem, which is believed to be incomplete
(see [Ka92]) for the class of "A/2-maximization problems via S-reductions. We conjecture
that the N-HoprrpLD function is incomplete, too. The PN-HopuELD function on the
other hand is complete. First we need two complete problems.

Theorem 3.19 ,1. LoNcBST PATH wITH FoRBIDDEN rAIRS is complete for the class

of AfP-marimization problems with polynomially bounded optima uia S-reductions.

2. Max Ctncurr Ourpur is complete for the class of AIP-marimization problems uia

S-reductions.

PRoop:

1. See [BeSc92].

2. Clearly Max CrncuIT OuTPUT is a,A,/2-maximization problem. For the reduction
take any ,A/2-maximization problem L : (P,C). An instance r of I is mapped
by the instance mapping / to the following instance of M.tx CrRcutr Ourpur:
a circuit that, given an input s, outputs 0 if P(s,r):0, and outputs C(s,r)
otherwise.

A solution s to /(z) with P(s, r) : 0 is mapped by the solution mapping g to a
standard solution of nonnegative cost to r. A standard solution of nonnegative cost
must be computable in polynomial time due to definition 2.9. A solution s with
P(s,r): 1 is maPPed bY g to s.

Now clearly z and /(z) have the same global optima, and any solution to /(r) is

mapped to a solution to r of at most the same performance ratio. Thus (/,g) is a
S-reduction (with, of course, polynomial size amplification). n
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Theorem 3.20 1. TAe PN-HoPFIELD function with unit weights is complete uia S-

reductions for the class of AIP-marimization problems with ltolynomial optima.

2. The PN-HoeFIBLD function with unbounded weights is complete uia S-reductions

for the class of AIP-marimization problems.

3. Approrimating lhe PN-HoPPIELD functi,on with unbounded weights globally within
2n' solues a AIP-hard problem (for some €> 0).

PRoop:

1. By S-reduction from LoNcssr Paru wITH FoRBIDDEN PAIRS. We first construct
a Hopfield net with polynomial weights for this problem, and then show how to
reduce the weights to unit size. Let (G,P) be an instance of LoNcnsr PATH wITH
FoRBIDDEN rAIRS, where G : (V,B) is a directed graph, P a collection of forbidden
pairs. Lei m denote the number of vertices of G. The Hopfield net fI that is going
to find optima of (G, P) is described by a matrix of m2 units {u;,;li, j :0. . . m - 1}.
The columns represent rn copies of the graph. Lel L :2m3 * 1 and W : m2. The
connections of 11 are as follows:

o Positive connections:

- between u;,i and ui+r,* if (u1,un) e E and 0 < i < m - 2: weight I/
o Negative connections:

- between u;,; and u;,1, for all j lk and 0 < i < m - I: weight -tr
- between u;,s and u;,6 for all i 17 and 0 < k I m - 1: weight -I
- between u;,; and un,t if (ui.,u,) € P, for all i I k: weight -tr

The thresholds of all units in column 0 are 0. all other units have threshold W - 7.

w-7 w-7 w-7 w-7
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A global optimum of 11 represents a longest simple path (of length k) without
forbidden pairs in the following way: one unit per column is on in the columns 0-k.
The unit that is on in column i corresponds to the ith vertex of the path. These

units form a path in H, too. All other units are off.

To see this consider a globally optimal state of the net. First assume that two units
in the same column are on (i.e., the state does not represent one or more paths in
G). Then the loss of this mistakeis -L and thus larger than the sum of all positively
weighted edges incident to a single unit (which is at most 2m 'W - 2*"). So at
least one of the units can be turned off. The same holds if two units in the same

row are on (i.e., a representation of paths that traverse the same vertex twice), and

if two units that are on correspond to two vertices of a forbidden pair. Thus an

optimum corresponds to one or more simple paths without forbidden pairs.

Only a representation of a single path that starts in the first column can have

energy more than 0, because any path traverses one more vertex than edge. A path
of length k loses k + 1 thresholds and gains k edges. Only if one of the thresholds
is 0 (the path starts in column 0) positive energy is possible,, because the threshold
W - 7 exceeds the possible gain of any path. Thus a global optimum represents one

simple path beginning in column 0 and respecting all forbidden pairs. The energy of
the optimum equals the length of the represented path. Thus a longest path yields
a globally optimal state of f/.
Now the weights will be reduced. First any positively weighted edge is replaced:

Jy<

We will refer to the new units as "edge units", to the original units as "vertex units".
The resulting Hopfield net has the same global optimum as before (see the proof
of theorem 3.15). Now take a negative edge. Instead of connecting u;,i to u4,7 with
weight --L use a complete bipartite graph of unit weight negative edges between

the vertex unit u;,; and all adjacent edge units on one side, and u6,1 and all adjacent
edge units on the other side.

The new construction expresses the same constraints as before. A state of the
Hopfield net (restricted to the vertex units) that does not represent a simple path

W
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without forbidden pairs has energy less than 0: if some vertex unit that is on is
neighbor of less than WlZ edge units that are on, then there is a loss of at least
Wl2 - 1 (caused by the threshold), and thus the state has energy less than 0. If
at least Wf 2 edge units are on in the neighborhood of every vertex unit that is
on, then at least (Wl2)'negative edges contribute to the energy for every violated
constraint.

Now to the formal definition of the reduction. The instance mapping / maps (G, P)
to H. The solution mapping g maps a state of -[1 which represents a simple path
without forbidden pairs (on the vertex units) to this path. Any other state is mapped
to a trivial solution to (G, P).

fI and (G,P) haveglobaloptimaof thesamecost. Astate sof H eitherrepresents
a simple path without forbidden pairs or has energy at most 0. In the former case

the path has at least the same cost for the instance (G,P) as s has for H. In the
latter case the trivial solution to (G, P) has larger cost than the state of the net.
So g(s, (G,P)) has at most the same performance ratio as s.

2. By S-reduction from Max CtncuIT OurPur. Without loss of generality an instance
of Max CtRcurr Ourpur is a circuit C made of AND and OR Gates with fan-in
2 and fan-out 2, and of NOT-gates that are only connected to inputs. Note that
monotone circuits trivialize \,{nx CIncuIT OurPUT. The circuit is given to the
reduction as a list of gates in topological order.

The Hopfield net that is going to simulate the circuit is called 11 and consists of
three types of units: units for the input gates, units for the internal gates, and a unit
that "decodes" the output of the circuit,, i.e., represents its value as a contribution
to the energy function.

Let m denote the size of the circuit C,letW - 4 +t2^m2 and,L :W2. There are

two units for every input gate i of the circuit: u;+ and u; . They are connected by an

edge with weight -1, (which ensures that they cannot be on both in an optimum).
These "input units" have threshold -1 so that one of them can be turned on with a

positive gain if both are off (all edges incident to the input units will have positive
weight).

An AND-gate is simulated by a single unit, an OR-gate by three units. These units
are connected to each other and to the units simulating the predecessors of the gate.
The weights and thresholds are determined by V :Wl4i for gate i.

V
V _I
v -22V _I

v -3
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The single unit of an AND-graph and the lowest unit of an OR-graph will be referred
to as "gate units". The predecessors of the depicted gate simulators are other gate

units or input units uo+ resp. u; . u;+ tepresents a unnegated input, o; a negated

input.

The exponentially decreasing weights ensure that every gate unit computes its gate

function on the states of its predecessors) independent of the states of its successors.

trV is chosen such that even the lowest of all gate units has a threshold of at least

4.2^m2 - 3 and is independent of the following representation of the circuit's output.
The k * 1 units simulating the output gates Outf; (where k < *) are connected to
a unit dec \haL "decodes their value".

Outco Out{

Now consider a globally optimal state of the net. We can assume that all pairs of
input units have complementary states. It is possible to correct the states of gate

units in topological order (by local search): if the two predecessors of an AND-unit
are on, then the unit can be turned on; if one of them is off, then it can be turned
off. If at least one predecessor of an OR-graph is on, then one intermediate unit
of the OR-graph can be turned on and afterwards the gate unit, else they can be

turned off.

Note that the energy of a correct AND-graph is at most 1, the energy of a correct
OR-graph at most 2. Thus in the whole net, except of the edges to dec, the energy

cannot exceed 2m. A state that does not represent a correct computation of every

gate can be improved by local search. The input units have the value that maximizes
the energy. This is the value that maximizes the value encoded by the outputs of
the circuit, because this value (multiptied by *') is added to the energy function
by the edges to dec (dec rs on in any optimum). The energy of a globally optimal
state of H is O(m) + Topt. rn2 when the circuit C computes Topt (binary encoded)

on the states of the u+. The states of the u* induce a globally optimal input for C.

Now to the definition of the reduction. The circuit C is mapped by ihe instance
mapping f fo H. Any state of the Hopfield net is mapped by the solution mapping
g to the states of the input units u*.

If a state s of H has energy less than 0 then g(",C) has a better performance ratio
(for C) than s (for 11), because the circuit outputs encode nonnegative numbers only.
If s has energy at least 0, then it represents a correct computation or a computation
where additional gate units can be turned on correctly,, neuer a computation where
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a gate unit is iltegally on (this would lose at least (4 '2^m2 - 3) - (20^') on the
threshold of a gate unit and this loss exceeds the maximal positive energy). The
states of the u+ induce a solution to C of cost ?, where 7 is larger than the output
of the circuit-simulation in 11. This holds because the circuit-simulation in fI is

monotone (NOT-gates are implemented as negations of inputs) and no "allowed"
error of the circuit-simulation increases its output.

The energy of a state s of 11 is O(*) * T'm2 for the circuit-simulation output
T'. Lei T be the output of circuit C on the input g(t,C). Then T' < T. The
globally optimal output of C and of the circuit-simulation is the same valueTopt.
The performance ratio of g(t,C) is (with some constants c, d)

R(sG, c), c)
):

2dm t ToqtmToPt

T
:o(

cm I T'm2
O(R(s,, H))

if T > 0 and cm*T'm2 > 0. Oiherwise it is easy to see that fi(g(s,,C),C) < /?(s, f1).

3. Follows from fact 2.7. and statement 2. !

Global optimization of PN-HoPFIELD is a complete problem under an approximability
preserving reduction. Thus approximation cannot be done considerably more efficient
than optimization for PN-HoPFIELD.

PN-HoppIELD corresponds to a generalized graph cut problem.

Theorem 3.21 1. TheMtx Cvr problem with positiue and negatiae weights can be

solued by a Hopfi,eld net, i.e., PN-MAX Cur<aa5 PN-HoPFIELD.

,?. PN-HoPFIELD(ars PN-Mnx Cur.

PRoop:

1. Let G be any graph with weighted edges. Now as in theorem 3.16 the PN-Max
Cur problem can be implemented, this time using positive and negative weights.

2. Given a Hopfield net -I1 transform to PN-Max Cur like in theorem 3.16 by using a
vertex clamped to '1' and a vertex clamped to '0'. This "clamping" can be achieved
in PN-Max Cur by a very large negative edge between the two vertices. All
thresholds t; can be transformed (like in theorem 3.16) so that they are half of the
sum of weights on edges incident to ur. This yields a PN-\4ax Cur instance. n

Now we return to the consideration of local approximation. First note that the lower
bounds for the positively weighted Hopfield function are valid for PN-HoPFIELD, too. In
the case of unit weights this is all we know.

Theorern 3.22 The PN-HoPFIELD functi,on with unit weights cannot be approrimated,
locally within JilS in functionat ACo.
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Thc abov<: resuit is very r,veak since obtaining an exact solution solves a Z-halcl pro-

blem. If ihe weights are polynomia,l or unbounded the result can be improvccl.

Theorern 3.23 7. PN-HopFIELDp'l is At'ClLSpot-complete uia AfC-[,PR-reductions.

2. PN-HopFIELD'rp is PLS -comltlete uia P -LPR-rctluctions.

3. A local nk -approrimation o/ PN-HoPFIELDp'/ sohses a P-hard problem,.

/y. A loca,l 2''Jn-approrimation, of PN-HoPFIELD'"p solues a PLS-hartl proltlem, (for
sont,€ c > 0/.

Pttoop: We rvill show a ,A/C-LPR-r'ccluction (with size amplification O(n2)) florn
tVCl-Ft,tpr.ro* (fol albitrary k) to PN-Hopt'tllDpo/(with weights bounded by no(A)). Af-
terrvalds we shor.v that this construction a,lso,A/C-t pR-reduces Flrp to PN-HoppIELD'r'p.
Theolcm 2.15 leads to st,atements 1. and 2. (the implicit inclusion statements ale trivial).

Tlreorem 2.17 implies that a n2r-approximation for AfCl-FLrP4p.1on solves a 2-hard
problem, and that a 2''"-approximal,ion for Flrp solves a PLS-hard ploblem fol some

c ) 0. The rccluctions of 1. and 2. irnply statements 3. and 4. via tlteolem 2.14, because

their size amplification is O(n2).
For thc reduction first a given circuit has to be mapped to a Hopfield net wit,h po-

lyrromial rveights. We ca,n assume that this circuit has p inputs, q outpttts, size m,, and
clcpt,h d with Q,d,: O(logm), and that the circriit consists of fan-in/Ian-out 2 AND/OR
gates and of NOT gates that, are connected dilectly to the inputs. The Hopfielcl net 11

uscs representations of the p inputs of the circuit and works out p * 1 simulations of the
cilcuit, onc for the "normal" input assignment (callcd the "oliginal" circuit C) and one

for each possibility to flip onc input variable. The idea to use such "test circuits" was

introcluccd (rvhile PLS-redrcing Fr,re to NIax S,,rr) in [Kr90]. There is one test circuit
7) fbr ever'.y variable. The net r,vill allow to flip a variable in the nolmal input assignment
i{l1,he colresponding test circuit has a larger output than the oliginal circuit. 'I'his will be

clone in a complica,ted scquence of local optirnizal,ion steps. 11 has only local optima in
which the oliginal circuit and all test cilcuits compute correctly, and the original cilcuit
ha,s a larger outptit than any test circuit. In this situation the variables induce a locally
optimal solution to the AtCl-Frrc/oe instance.

11 consists of units representing the input variables, of units representing the circuit
gates, of units decoding the oul,puts of the circuits, and of control units. There are 2p

"variable units" u; and tr; for L < i < p. Thc ui represent the "normal" input, rvhereas

1,1rcr ro; corlespond to the complements of the u;. u; is lead by C and by the T1 for j + i,
rr.r; is rcad by T;. Other- units form the circuits C ancl fl in a similar way as in the proof
of theolern 3.20. Note that we ar-e allowcd to usc lvcights that arc cxponential in the
clepth of tlie circuits. The outputs of every circuit are connected to a vertex that decodes

thcm using weights exponcntially large in q and represents the binary encoded output as

a contribution to the enelgy function. 'I'here ale 6 more control units fol ever-y test cir-cui1,

arrd va,rialrle. The nct has size O(pnz) : O(^').
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Before describing the whole construction in detail we give a short explanation of the
way local search will change the state of the net towards a local optimum. It will be

possible to get into a state where every circuit computes correctly and the states of the
variable units represent some input assignment. If a circuit 4 has larger output lhan C,
then turning on a single "decoding" unit (called mar;) gains the value of this output while
losing the value of the output of C. mau activates some control units, these "disconnect"
the circuits C and Ti f,or j I i, i.e., turn every unit in these circuits off, and flip the
variable u;. Then circuit C will be "connected" again, C recomputes its output and

is now maximal, mari can be turned off. This allows to disconnecl T; and flip tu; in
turn. Now the net can return to a standard situation, and the whole process can start
again-until the inputs of C produce a locally optimal output.

Let R:4pm, S : R2,W :4p40'572s, L:W2. Note that all these numbers are

polynomially bounded in m. u, and ui are connected by an edge of weight -S, they both
have threshold -3/i. Every variable unit is connected to a unit duplicating its state and

to a unit computing its negation. The first of these units is connected with weighl W and

has threshold W - 1. The second of these units is connected with weight -W and has

ihreshold -1. In the case of u; these two units are each connected to p units duplicating
their states. This makes the state of u; and its negation available p times (for the p circuits
that may want to read it). to; is read by only one circuit and thus does not need this
duplication. The 2 .p duplicating units have threshold W I @p) - | . Their connections have

weight Wl(+p). The construction is depicted below. The two successors of the variable
units will be referred to as "variable duplicators", their successors as "input units" of the
circuits.

w -1
W
4p

W1-:-- L
4p \-,-

p

-,-

p

Suppose that u; (or u;) has some fixed state. Then local search can proceed as follows:
if u; is on, then its successor with threshold -1 can be turned off, its other successor can

be turned on. If u; is off, then its successor with threshold -1 can be turned on, its other
successor can be turned off. These two units are independent of their p successors, which
are connected to them with weight Wl(+p). The states of the units under the two direct
successors of u; can be changed by local search so that they duplicate the states of their
predecessors. Note the following: if all these units are off and u; has some state (but is not
fixed), then local search leads to the situation, where the units in the left branch under u;

duplicate the state of u; and the units in the right branch under u; duplicate the negation
of the state of u;. This does not change the state of u;.

1)i -.9 wi
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The circuits C and T; are placed below this construction and are connected to the
(negated or unnegated) input units, where C is connected to inputs that follow the u;

only, while Z; is connected to inputs that follow u; and to those that follow u; for j + i.
The circuits contain no further negations (NOT-gates). The gates of the circuits ale
simulated by one unit for an AND gate and three units for an OR gate, where an edge

leading into a gate in depth i has weightV :Wl(ap.4i). Note that on the output level

the value 7 is still at least Wl(ap.4o):,972s. This ensures that the output gate units
ale independent of the deeper decoding units. The gate simulators are:

V
v -7
v -2

These gate simulation graphs can be corrected by local search from the top to the
bottom due to the exponentially decreasing weights (like in the proof of theorem 3.20).
Note that turrring on any unit in these circuit simulations or in the higher variable dupli-
cation units can contribute at most 1to the energy function, i.e., the gain from edges to
higher units minus the threshold is always at most 1. The gain from edges to lower units
is counted as the gain of these lower units.

The g outputs of cilcuit C are connected to a vertex marc (which has threshold -1)
with weight 2i 56 for the 7th output bit (marg is on in every local optimum). The outputs
of the circuit T; are connected to a unit mo,r; wtth weight 2i 56 for the 7th output bit.
Tt7a,x:; has threshold Ss. mari is also connected to the output gate units of C with weight

-2j 56 for output 7. Additionally all the mar; (not mars) are fully interconnected with
weiglrt -L on all edges. This construction allows to turn on one rrlat; if at least one T;

]ras a lalger output than C. The -.L connections ensure that at most one rhafr; can be
turned on with a positive gain.

out(T;) out(T)

maT j

mAnC

2V -1
v -3

out(C)
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The crucial idea of this construction is that turning on a single mari makes T; "carry"
the new maximal output (i.e., loses the output of C and gains the output of T;) as long
as C has to be corrected and the variable u; has to be flipped. Afterwards C "carries"
the increased output again. To implement the correction process there are 6p control
variables o?, Bl,7n0 and o:, Pn',1 for I < i < p.

Local search will proceed roughly in the following way: if the states of the outputs
of f encode a larger value than those of the outputs of C, then mo;ri can be turned on
and will start a control process that "disconnects" C and Ti U # i) and the variable
duplicators of u; by edges of weight -2 leading into every unit of these. The thresholds
of the output gate units of C and of the Ti are not longer exceeded (mari is on and all
mari are off). These units can all be turned off. Now the thresholds of their predecessors
are no more exceeded and these can be turned off. In this way all units in the circuits C
and I can be turned off from the outputs upward. When all units in the disconnected
circuits and variable duplicators are off, then the variable u; is connected to no unit that
is on, except possibly tr.r;. The control units allow to flip u; and connect the circuit C and
the variable duplicators of u; again (i.e., the control unit with the weight -2 edges to C
and these duplicators is turned otr). C is recomputed starting from the vector of zeroes

and thus leaving the variable unit or unchanged. C computes the same output as fi and
mctri can be turned off. At this time the T1 are connected again and can be recomputed
starting from the vector of zeroes. The circuil Ti can be disconnected in order to flip the
variable to;. After the recomputation of T; a new cycle can start. In this way the Hopfield
net moves to larger and larger energy, where the current maximal output dominates the
energy function and is always preserved.

The control units o? , B?,11 act in the situation when ui,LDi -- 1, 0 or Di,'u)i :0, 0 (in the
following we will identify units with their states). a! is connected io mari with weight
Sa, to u; with weight -S, and to u; with weight -25. af has threshold 54 - S - -R.

Additionally af is connected to all units in C and Ti for j + i and to the variable
duplicators of u; with weighl -2. These connections weight together some value between
0 and --R and are irrelevant for the decision whether a! can be turned on. B? is connected
to mar; with weighl Sa, to u; with weight - 52 , to tr.r; with weight -,52, to af with weight

-2S, and to all units in Tip wrth weight -2. B! has threshold 54 - 25 - R. ?,0 it
connected to all mari with weight -Sn, to u; with weight -S3, to to; with weight -2R,
and to all units in fr including the variable duplicators of u; with weight -2. 7,9 has
threshold -R.
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TTLAT;

The "equivalence" stated the following propositions means that a situation contradic-

ting the statements can be improved by one or two local search steps'

Lemma 3.24 1' 
"? 

: I iff Tna'Li: L and 1);: I and w;: Q'

2. 13? : I iff Irlar'i -- I and u;: w;, - 0.

3. l? :7 iff mari :0 for all j and u;: wi - A'

If f : 1 then all mo"ri must be off and 'ui : 't1)i : 0, because else its threshold of

-R is not exceeded. Conversely, if marl is off and ui:'tri: 0, then 1f can be set to 1,

because its threshold is exceeded even if all other negatively connected neighbors are on.

P? -- I iff mar;: 1 and ni: ?t)i:0 is clear from the threshold Sa -25 -,R. The

connections to a! and to the T1 do not matter.
If o! : 1 then rTlar; must be on and ?-r,'; must be off as well as l3?, otherwise its

threshold 54 - S- -R is not exceeded. If ui:IDi:0 then Bl can be turned on, and then

the threshold of a! is not exceeded, too.
The control units o:rBir,1! acl in the situation when Di,lt)i:0,1 orui,LDi-_ I,I. a!

is connectedlo mar; with weight Sa, to u; with weight,9, and to u.'; with weight 25. a!
has threshold Sa + 25 - R. Additionally a] is connected to all units in C and Ti lor
j I i and to the variable duplicators of u; with weight -2. B,1 is connected lo mariwilh
weight Sa, to u; with weight,92, to ?rr with weight 52,Lo a] with weight -2^9, and to all

units in Ti4;with weight -2. Pi has threshold,ga +252 -25 - n. i is connected to all
rnari with weight -Sn, to u; with weight,53, toT.o; with weight 2R, and to all units in fl
including the variable duplicators of tr.r; with weight -2. n'has threshold 53 + fi.
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Lemma 3.25 1. a! : I i'ff mat;: I and u; :0 and w; : l.

2. l3i : \ iff mari: I and ui: wi - l.

3. 'yl : I iff marl :0 for all j and ui: wi - I.

If yl : 1 then all mari must be off and ui : tri : 1, because else its threshold of
53+fi is not exceeded. Conversely,if mari:0 and l)i:tDi: 1, then 1| can be set to 1,

because its threshold is exceeded even if all other negatively connected neighbors are on.

13| : I iff mar;: 1 and L)'i: rt)i: 1 is clear from the threshold Sa +252 -25 - R.

If. a! :1 then raar; must be on and ?n; must be on as well. Bo1 must be off, otherwise
its threshold 54 + 25 -.R is not exceeded. If u; - wi : 7 Lhen {3} can be turned on and

the threshold of a| is not exceeded, too.
Now the net .FI is completely defined.
The dynamic of local search is as follows: if the output of C is not maximal, then

some test circuit 4 has a larger output. Turning on rnar; Ioses the value of the output
of C on the negative edges to the output units of C, but gains the value of the output
of 7, (the difference is larger than the threshold 55 of mari because of the multiplication
of the output value by Su). Then one oi can be turned on, the circuits C and T6;
can be turned off from the outputs upwards to the variable duplicators of u; (every unit
in the circuits receives an edge of weight -2 from a;). The variable u; flips, B; can be

turned or, cy; can be turned off, the circuit C (and the variable duplicators of u;) can be

recomputed, the output of C is equal to the output of fr, and rnari is turned off (rnar; has

input O(Sn) and threshold.g5). Then B; can be turned off. Now all test circuits except
T; can recompute their output (and the process up to here can take place for another
variable until eventually for every variable u,i: u;).Also 7; can be turned on, then fl is

disconnected, w; can be flipped, and 7; is turned off reconnecting 4.
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Lemnra 3.26 In any local optimum of H all circuits compute correctly, all uariable units
satisfy u; I w;, and the ualue encoded by the outputs of C is at least as large as the aalue

encoderl by the outputs of any other test circuit, i.e., the aariable units induce a local
olttimum for Al C1 -FLIPT,' .

Consider any situation of the net supposed to be a local optimum. First assume

some connected (i.e., all control units disconnecting it are off) circuit would not compute
correctly. In this case either some unit of a variable duplicator or some gate unit would
produce this error. If a unit in a variable duplicator is wrong then either the variable unit
or its successors can be changed by local search. If one of the input units or of the gate

units in the circuits is wrong, then it can be corrected by local search. All other gate

units can be corrected from the top to the bottom. So in a local optimum the variable
duplicators have the right states and the circuits compute correctly.

Now we show that the proposition of the lemma holds. Consider a state supposed to
be locally optimal. In this situation the statements of lemma 3.24 and lemma 3.25 can

be used as real equivalences.

1. For the first case assume that sorne m&r;: I. Clearly no other mari is on because

of the very large negative connections between them. Now the circuit 4 must be

connected (because ?r cannot be on) and therefore f computes correctly. It is also

tlue that the output of 4 is larger than the output of C.

(a) If uitlni :0, 1 and mari: 1 then a] can be turned on. Now all gates of C and
Tis; can be turned off from the outputs up to the variable duplicators of u; (the
thresholds of the outputs of C are not exceeded), leaving u; only connected to
the units a] and ur; in state'1'. Thus ?.,? can be turned on (u; has input .9 -.9
and threshold -3/?). Then B| can be turned on, o] can be turned off, and C
can be recomputed from the vector of zeroes. This leaves ur unchanged. The
new output of C is the same as the output of 4 and thrs mar; can be turned
off. Hence the considered state is no local optimum. Contradiction.

(b) If ?)ittDi : 1,0 and mari : 1 then a! can be turned on. Now all gates of
C and Tip can be turned off up to the valiable duplicators leaving u; only
connected to a! in state'1'. Then ui can be turned off (u; has input -,5 and
threshold -3fi), Bl can be turned on, af can be turned off, and C can be
recomputed from the vector of zeroes. After this it is possible to turn mari
off. Contradiction.

(c) If ui : rDi : e and Trler; : 1 then Bf can be turned on. Then ai can be
turned off and C is connected. This implies that C computes correctly. If C
is recomputed from the vector of zeroes then a correction does not affect u;.

Otherwise this may be the case leading to one of the cases a) and b). So both
circuits C and f compute correctly and on the same inputs. They have the
same output and mari can be turned off. Contradiction.
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2. Now assume for the second case that all max; are 0. Then for all variables with
'ui : u)i the second variable can be flipped.

(a) If ui: LDi: 1 then it is possible to turn on 7;t, disconnect Ti,fltp to; to 0 (u.r;

has input -S + 2R and threshold -3/?), turn off f again, and recompute f
from the vector of zeroes (without changing u;).

(b) If ?)i : 'tri: 0 then it is possible to turn on ?;0, disconnect T;, fltp wi lo I (w;
has input -2R,, threshold -3/?), turn off 700 again, and recompute f from the
vector of zeroes (without changing tr.';).

Thus mcr; : 0 for all i, aII u; I *0, and all circuits are connected and compute
correctly. The output of C is at least as large as the outputs of the fr, and these compute
the 1-flip neighbors. So the variables induce a locally optimal solution to the AlCt-Frrc6n
instance that was mapped lo H.

Lemma 3.27 A local opti,mum of H has energy O(^gu. output(C)).

Since all gate graphs gain at most fi, every variable unit gains at most -R, and every-
thing else at most O(pS4) the edges at the output units of C dominate the energy.

The reduction from AIC'-Frrc/os consists of the described mapping / from a circuit T
to the net H. The solution mapping g maps a state s of the net 11 to the states of those
variables u; and T-r.r; that are read by the circuit with the largest output, t.€., Ir; is used

when 7, has the largest output.
A locally optimal state of 11 is mapped to the u;, and these induce a solution to the

AlCr-Frrcros instance 7 of almost the same local performance due to lemma 3.2613.27.
If a state s of fI has energy below zero then any string is a better solution to 7 and

the local performance ratio of g(s,7) for 7 is larger than the local performance ratio of
s for 11.

If the energy of s is larger than zero then no severe error happens in a computation: no

--L connection is active and no unit in a circuit simulation is on which should not. Units
may be off which should be on, but this decreases the value of the circuit outputs and
hence the energy of the state, because the circuit simulation uses monotone gates only.
So the states of the variable units induce a solution to ? with larger cost than the value
of the outputs of the circuits in the net. The inputs read by the largest circuit induce a
solution with almost the same or better performance ratio compared to the state of the
net, because the outputs dominate the energy function. Thus this is a LPR-reduction.
The reduction is computable in functional LOQSPACt.

Now observe that exactly the same construction works for Ft tp when exponentiai
weights are allowed. Exponential values of the parameter W are used due to the possibly
linear number of outputs and the linear depih of the given circuit. !

We have examined the general Hopfield function. It is a "very complete" problem-
possibly one of the hardesf AfP optimization problems. The most interesting remaining
open question is whether this function can be approximated locally in the case of unit
weights.
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4 Graph Cut problerns

We will now investigate the three graph cut problems that are exactly as hard to optimize
as the three versions of the Hopfield energy function. The reductions to the cut problems
horvever did not preserve approximability. The situation is therefore that hardness results
fol Max Cur with nonnegative or with signed weights are valid for the N- resp. PN-
Hoprlnlo function, too, whereas hardness results for the Hopfield energy function do

not generahze to the \{ax Cu:r problems. The reductions between s,I-MIN Cur and

P-HopEtnLD did not preserve approximability either.

4.L The MIU Cur/Max FLow Problem
The positive weight Hopfield energy function is related to the s,I-MIN Cur problem (as

shown in theorem 3.2). The reason why s,l-\,{IN Cur is famous is its connection to s,f-
Max Flow: both problems have the same set of instances, and global optima of s,l-MIt'l
Cur and of s,l-VIRX FLow on the same instance have the same value (see [VL90]).

Theorem 4.1 1. Global optima of s,t-Mtx FLow can be constructed in functional
RTC| if atl edge weights are polynomially bounded.

2. Global optima of s,t-\/Inx FLow can be constructed in polynomi,al time i;n the case

of unbounded weights. Finding the ualue of a global optimum solues a P-cornplete
problem.

3. Gtobal optima o/s,l-MtN CtJ'r can be constructed in functional RTC| if att edge

ueights are polynomially bounded.

/. Global optima o/s,l-Mtl Crtr can be constructed in polynomial time in the case

of unbounded weights. Finding the ualue of a global optimum solues aP-complete
problem.

5. Finding local opti,ma of s,l-l\{tN Cvr solues aP-complete problern in the case of un-
bounded weights, solues a LO]SPACt-complete problem in the case of polynomial
weights, and is impossible in functional ACo in the case of unit weights.

PRoop:

1. In [KarRa90] an algorithm is described that constructs a global optimum of s,f-
Max Flow in the case of polynomial weights by computing the determinant of
a polynomial size integer matrix (which contains some random numbers). it is

shown in [Pan85] that O(log n) integer matrix multiplications suffice to compute
the determinant of an n x n integer matrix. An integer matrix multiplication can be

computed in function al TCo due to fact 2.5, thus the determinant can be computed
in functionalTCl. This algorithm for s,f-Max Flow implies statement 1) of the
theorem.
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2. See [VL90] and [KarRa90].

3. Given a global optimum of s,l-Max Flow one can can construct a global optimum
of s,l-MIt'l Cur by breadth first search (see [VL90]). This is possible in,4C1 (see

[KarRa90]).

4. An algorithm follows from 2) and the note to 3). The hardness result follows from
statement 2) and the fact that global s,f-lVIRx Flow and s,I-MIN Cur optima
have the same value.

5. Local optima of s,I-IVIIN Cur are as hard to find as local optimaof P-Hoprtoto
(see theorem 3.2). Theorems 3.4,3.7,3.5 imply the statement. n

The classical algorithms for Mlx Ft,ow build on finding augmenting paths and in-
creasing the flow along these until no more augmenting paths exist and the obtained flow
is optimal. This can be viewed as a local search process: two flows are neighboring if
they differ by a single augmenting path. A somewhat easier neighborhood is defined by
augmenting paths that are directed forward on every edge (general augmenting paths
include backward edges where the flow is reduced). A" optimal flow with respect to this
neighborhood is used as a building stone in Dinic's Max Flow algorithm as well as in
other related work (see e.g. [Co92]).

Definition 4.L A blocking fl,ow is a fl,ow such that euery path from s to t contains at
least one saturated" edge.

Obviously a blocking flow is a locally optimal flow with respect to the "forward path"
neighborhood. It is unknown whether blocking flows are easier to compute than maximum
flows. The following shows that both tasks are at least not very easy.

Theorern 4.2 Approri,mati,ng a global optimum o/s,l-\4rx Cur, s,I-MAX Ftow, and
approrimating a s,l-BtocxING FLow in directed acyclic graphs within 2 (erponential
weights), nk (polynomial wei,ghts), 1/nl2 (unit weights) solaes a NLOgSPACt-hard pro-
blem.

Pnoop: Approximation solves the GnapH AccESSIBILITv PRonLnu (lemma 3.12).
A legal s,l-blocking flow on a given directed graph of size n, indegree 2, outdegree 2 with
two special vertices s and I has either value 0 (if no path from s to I exists) or at least
the value of the smallest edge weight on a path from s to l. Edge capacities can be used
to make an arbitrarily bad approximation (with respect to the maximal allowed size of
weights) solve the accessibility problem. Choose the weights of all edges as W : nk in
the case of polynomial weights and as W : 2 in the case of exponential weights. Now
clearly a W-approximation solves the accessibility problem.

In the case of unit weights replace every edge by the following graph:
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H

Clearly if a path from s to I exists, then any blocking flow has a value of at least n,
otherwise exactly 0. The size of the graph is increased to at most ly' - n I 2n . n. A
JN l2 ( n-approximation solves the accessibility problem.

The same result is valid for the stronger s,l-MRx Fr,ow and also for s,l-MrN Cur:
if a path from s to I exists, then the globally minimal cut has at least value nk resp.2
resp. n, otherwise 0. n

Global optimization of s,l-M,q.x Flow and s,l-Mtiv Cut solves a 2-complete problem
in the case of unbounded weights, so a large gap lies between the above result and the
hardness of optimization. It is unknown whether these problems can be approximated in
Af C. They are pseudo-f-Af C problems since they can be solved in2-Af C when the weights
are polynomial. But a technique similar to that applied to the Ktqapslcx problem
to achieve an approximation-scheme (by dividing the weights down to polynomiality, see

[PapSt82]) does not work. The best approximations that are known work only in Af C if the
depth of the input graph, i.e., the maximal length of a path from s to I, is polylogarithmic
(see [Co92], where approximations of blocking flows are used, these approximations depend
on the depth, too). However) we can present an amplification result (similar to one known
for INInpENDENT SET, see [PapSt8z]) which says that approximation is either hard or
very easy.

Theorem 4.3 1. If s,l-\4ax Flow with unbounded weights can be approrimated glo-
bally in (QA|C within a constant, then it has a (randomized) NCAS.

2. If s,l-MIN Cur with unbounded weights can be approrimated globally in (R)NC
within a constant, then it has a (randomized) NCAS.

3. If s,l-BLocKING FLow with unbounded weights can be approrimated in (R)NC
within a constant, then it has a (randomized) NCAS.

Pnoor: Assume that a "A,fC algorithm "4 exists which produces (given a graph G) a
legal flow of at least (1 - .) the value of the maximum flow for some constant e. LeL G
be a directed graph with weighted edges and two special vertices s and l. We can assume
that s has indegree 0 and that f has outdegree 0, because otherwise we can insert new
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vertices s' and l/ without changing the value of a maximum flow, that are predecessor

resp. successor of s resp. I and have the demanded property. It is also allowed to restrict
the choice of s and I to single vertices instead of subsets of the vertex set, because such
vertex subsets can be merged into a single vertex.

We will insert G into itself, run "4 on this new graph and read off a better solution than

"4 normally guarantees thus yielding an approximation algorithm of improved quality.
This construction can be iterated constantly often producing approximations of every
desired constant quality, i.e., an approximation scheme.

We will identify flows F with their value. Let G' be as follows: first take G. Then
for every edge e : (u,u) with weight tr.r insert the graph G,i.e., replace eby G such that
u coincides with s and u with ,. All other vertices of G are inserted as new vertices, as

well as all edges. Now the graph replacing the edge can carry exactly the maximum flow
of G. To express the weight multiply all edges in the small copy of G with tr.'. The new
graph G' (after replacing all edges by copies of G) has size m(n - 2) * n for n being the
numbel of vertices of G and m lhe number of edges. The maximum flow of G' is Flo, for
the maximum flow F^o, of G, because every graph replacing an edge can carry wF^or.
The s vertex and the I vertex of G' (called s; and f7) are the s and I vertex of the "large
copy" of G that connects the "small copies" which replace the edges.

Now run A on G'. The algorithm produces a solution with value at least (1- e)Ffl",.
At least one of the small copies of G or the large copy of G that connects these will induce
a better flow than (1 - .) of the optimum. This is the new algorithm:

1. Compute G'from G.

2. Run A on G', receive a flow F'.

3. Find the small copy of G in G' that carries the largest flow of all small copies after
division by its corresponding edge weight to. Call this flow F,.

4. Compute a flow in G by replacing the flow through every small copy of G by an
edge flow again and by dividing the whole flow by F,. Call this flow Fa.

5. Output the maximum of {F", Fa}.

Observe that fo : F' I Fo. Po is clearly a feasible flow in G. Fu is a feasible flow in G,
too. This holds because replacing a flow in a small copy by an edge flow induces a feasible
flow, and dividing all edge flows by the same value, too. Additionally every edge in G
carries at most its weight r.o and at least 0: since s has indegree 0 in G it is impossible
that a small copy carries a flow from its I to its s, thus the flow of any small copy (from
its s to its l) is at least 0 and at most wF^ (for the corresponding edge weight ,r.o).

The maximum of {F", Fu} is an improved approximation: If F" < JI - eF*", then

Ft,: (I - e)Ffl."

fi - eF^.o,

and the flow Fo is an improved approximation.

F'
Fo-
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If f; > tfi - eF^", then the flow F, is an improved approximation.
Thus in every case the algorithm gives an improved approximation. Iterating the

construction a constant number of times yields a NCAS: to find a solution that is 1 - 6

as large as the maximum k iterations suffice, where

l-6: (t_ ,1trzt* 44 k:losr"e(*) -'.*,"t(*)
Observe that the same technique works for s,I-MIN Cur. In the case of s,l-Blocxlxc

Flow observe that the same as above holds for F^o, being the least blocking flow (ap-
proximation in the sense of local approximation of section 2.4). !

Tlreorem 4.4 Approri,mati,ng s,I-NIIU Cut with unbounded weights locally within 2

solues a LOQSPACT-hard problem.

PnooE: Approximation of undirected s,l-Mtx Cul solves the Gnapu ACCESSIBILITY

eRoBLEM on directed acyclic graphs restricted to outdegree 1 (see theorem 3.7). Given a

directed acyclic graph G of size m with indegree at most 2 and outdegree at most 1 and
two special vertices start and acc first turn every edge around. Every vertex of the new
graph G' has outdegree at most 2 and indegree at most 1.

The input graph for s,l-\,{IN Cur is described by a matrix of m2 vertices u;,; where
each column is a copy of the vertices of G'. A directed edge (ui,u6) of G'is replaced by
undirected edges (rn,j,ro+r,o) for every 0 < i 1m- 1. The edges between column i and
i + t have weight 4^'-i . 1\ote that every vertex of G" has degree at most 1 to the left
neighbor column and degree at most 2 to the right neighbor column.

The set s consists of all copies of acc, I consists of all copies of start and all copies of
vertices with indegree 0 in G' except of acc and all vertices different from acc in column
0. Call this instance of s,l-I\,{rn Cut G".

Now consider any feasible s,f-cut in G". If a vertex u;,i in column i is connected to a
vertex in column i - 1 that is on the side of s, then u;,i can be moved to that side due to
the exponentially decreasing weights. The same holds for the side of l, because the edges

are undirected and all edges between the sides s and I count.
So in a local optimum for a vertex that is no copy of start and not in column 0 the

following holds: a vertex that is reachable by a path from the left starting at some vertex
in s is on the side of s. All other vertices are on the side of l, because they are reachable
by a path from the left starting at some vertex in f .

If no path from start to acc exists in G, then in G" all copies of start are not reachable
from paths beginning at some copy of acc to the left. If this holds then in a locally optimal
cut the sides of s and I are not connected to each other and the cut values 0. If on the
other hand a path from start to acc exists in G, then at least one edge crosses every s,f-cut
with weight at least 4 '-^ > 2n . tr

It seems as if finding a local optimum and a global optimum of s, f-MtN Cut are
almost equally hard tasks. Global approximation seems to be not much easier. It is an
open question whether local approximation is easier.
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4.2 Mex Cur and Mex (S)NP

It is shown in theorem 3.16 ihat \,{ax Cur is exactly as hard to optimize as N-HoPFIELD
(see [GJ79] and [SchY9l] for complexity results on \4AX Cur). On the other hand it
is known that Max Cul can be approximated very well. State of the art is a polyno-
mial time approximation algorithm that produces a solution .878 as good as the global
optimum ([Gowiga], which results in a performance ratio of 1/0.878). This improves
the 2-approximation (.5 of the optimum) known long before. On the other hand it was

shown that there is no polynomial time approximation scheme for Max Cult and some

other problems. These problems are hard for the class MRx SNP or the class lt{ax NP
defined by Papadimitriou and Yannakakis ([PapY91]) with syntactical means related to
a syntactical characterization of AfP given by Fagin ([F'a7+]).

Fact 4.5 AfP consists of all predicates on structures G which can be erpressed i,n the

formlS I d(G,,S), where S is a structure (and thus the fi"rst quantif,er is second order)
and S is a fi,rst order formula. $ can be assumed to be of the formVr-y, rh(*,1/,G,5),
where tf; is quantifi"er-free.

The cla.ss of those predicates which can be erpressed tnithout the second quanti,f,er is

called SA|P or strict AlP.

G is the "input", S corresponds to the guess-string of a nondeterministic machine.

Let us express SAT:

1T :Yc1r : l(P(c,r) n r € 7) V (l/(", r) n r / f\,

where c denotes a clause, r a variable, 7 the set of true variables. P and l/ encode the
instance: P(c,r): 1 iff variable r appears positively in clause c, N(c,r): I iffvariable
r appears negatively in clause c. Now to the class of optimization problems derived from
this characterizatiorr.

Definition 4.2 For each predicatefl € AfP of the formlSVr-y : tl;(r,y,G,S) the ma-
rimization uersion of II is defi,ned as:

max l{rlly , ,h(r,y,G, S)}1.

The class of such opti,mization problerns is called lvlax NP. The corresponding class for
the fI in SA|P is called Max SNP.

In the case of Max Cur the definition is very sensible. Consider "G is bipartite":

1C :Ve: (u,u) : [(u € C A" / C)V (u € C rt,u ( C)]

The maximization version is: maximtzethe number of external edges, i.e., maximize the
cut.
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Fact 4.6 The followitzg problems are MAX SNP-com,plete uith respect to L-rcdur:tions
(tuh,ich, are d,ef.ned in [PapY91]):

Max k-Snr for euery k ) 2, InonpnNtENT SET with constant degree, Mnx Cur
(anrl some in,teresting others).

It rvas shown in [PapY91] that all pr-oblerns in N{ax NP can be approximated within
a constant in polynomial time. We will latel show how to do this in function al TCo . Bu1,

fir.st to the exisl,ence of approximation schernes.

Fact 4.7 All problems that are MAX SIVP- or Mlx NP-hard uia L-redu,ction,s h,uue no

PTA,9 unlessP:AtP.

This rvas among an astonishing wave of results on interactive proof systcms in 1989-

1992 (fol an overview see U92]). It is proved in [AS92] and [ALMSS92]. The strategy is

very intelcsting. First a modcl of probabilistically checkable ploof systems is defined, then
AfP is characterized in terms of this model and afterwards related to approximation. A
probabilistically chcckable proof system consists of two parties: a prover with unbounded
computational capabilitics who provides a proof (e.g. that a graph is Hamiltonian) on
a ta,pe. This tape is accessible for the second party, the verifier, who has to work in
polynomial time. accesses some of the proof (using ra,ndomness) and accepts ol lejects it.
Thc plover always tries to cleate convincing proofs, but has to work off-line, i.e., cannot
bc aclaptive to questions of the verifier. 'Ihe verifier accepts correct proofs alrvays and
re.jects wrong ones wi1,h some constant probabiiity.

A crucial idea is to bound the number of queries and the amount of randomness the
velificr is allowed to use. The breakthrough was a charactelization of AIP as the set of
languages that a,r'e verifiable with O(log n) random bits and O(1) query bits to the proof.
'I'lre verifier of the ploof system for a AIP language accesses oniy a constant number ol
bits drawn randomly from a polynomial length proof and is abie to rc.ject wrong ploofs
irr polynomial time with constant probability, r,vhile accepting cvery correct proof.

'I'he connection to approximation algorithms is easy to see: there is a proof system
1ol any language in AfP. It is possible to decide the language (on some input) by fincling
out rvhethel a ploof exists such that aii of the verifiers (distinguished by their choice of
random bits) accept, or if a constant fraction of them rejects for every proof. To find this
out one can form a Boolean formula of verifyers operating on the fixed input instance.
The remaining input of every verifier is the portion of the proof it acccsscs. Since this
portion conl,ains only constantly many bits every verifier can be rvritten a,s a constant size

circuit. 'Ihe velifiers use O(log n) random bits and so there are polynomially many of
them. This yields a polynomial length formula of constant size circuits that is satisfiable
fuliv (by sorle proof) if the input instancc is in 1,he I/P language, and satisfiable only up
to a constant fraction otherwisc. 'I'hus a PTAS for the problem to maximizeLhe number
of satisfied cilcuits in a formula of constant size circuits solves a AfP-complcte ploblem.
This generalizes to all Max SNP-hard problems for the L-reductions of [PapYg1].
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Theorem 4.8 All problems in VIax NP can be approrimated within a constant in func-
tiona,l TCo .

PRoor': We first show how to do this for \4ax SNP problems, and then how to extend
the algorithm to Max NP. Let lSVr : g(r,G, S) be some predicate in IVP and M be

the maximization form of it. Then g is a constant size formula on Boolean variables S(z)
and G(tr) where z and ?, are projections of the vector r, and G is the input structure.
When G is fixed, then for every r the formula p is a constant size Boolean formula on
variables S(z).

There are polynomially (in the length of G) many possible values of z, and thus the
first order part of the predicate can be written as a polynomial size formula of conjuncts
with each at most k variables (for some constant k): gt A ..- A g^. The fraction of
assignments that satisfy g; is called fi > 2-n (unsatisfiable g; are left out, so at least one

assignment to the k variables satisfies g;). A random assignment to the variables S(z)
satisfies eachg; withprobability f;,andthussatisfiesexpectedD/,2*2-r conjuncts,
rn is trivially an upper bound on the global optimum. This random assignment yields a
constant ratio approximation algorithm (all up to here is from [PapY91]).

It is clear that such a random assignment can be produced in functional RACg. We
show now that k-wise independent randomness is sufficient for such an algorithm and
afterwards how to derandomize this leading to a functionalTCo algorithm. To see that
k-wise independence suffices consider the probability that a conjunct gr on / ( k literals
Sr,..., S7 is satisfied (which is satisfiable by setting S : u for some ,) by a k-wise
independent random assignment :

/t \
prob(cp;(r) : l)

\'=i /
I

: fl prob(Si: ri)
j=r

:112t>rlzn.

Hence an algorithm that uses k-wise independent random variables is sufficient for a
performance ratio Lf 2k : O(1)-approximation. To derandomize the algorithm we show
how to create n k-wise independent random variables from a polynomial size probability
space that can efficiently be searched in parallel. The following lemma is from [A8186].

Lemma 4.9 Supposen:2t -l andk:2t+I1n. Then there erists a uniform
probability space Q of size 2(n * \)t and k-wise independent random uariables €r,...,€,,
oaer {I each of which takes the ualues 0 and I with probability l.
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Let F be the field

length l: 11,.,.trn.
GF(n+I)
Consider

and denote the
the following 1

nonzero elements of -F by column-vectors
l lt by n matrix over GF(2):
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rl 11

1

rn

ri

*21-1 f2t-7 42t-| *2t-7&l &2 &3 *n

This is the parity check matrix of the BCH code of length n and distance 2t 12 (see

[Adg1]). It is well known that any k :2t * 1 columns of f1 are linearly independent. Now
let f) : {I,2,. . . ,2(n*1)t} and A be the matrix where the rows are all Lhe2(n*!)t : 2tt+t
linear combinations of the rows of -I1. Then the random variables €t . . . , {,, over f) are

defined by the 1 to nth entry of row i in A after choosing f from f). These random
variables are k-wise independent (see [A8186]).

To implement this on a TCo circuit increase the number of variables S(z) to the next
power of 2, compute the value of the S(z) for every possible choice from fl and evaluate
the number of satisfi"d Vo for this choice. This can be done in TCo due to facl 2.5.

Then determine the choice/solution s that satisfies the most conjuncts of g. Output this
solution. Since this solution is the best of all it is clearly better than the expectation, and
thus:

C(s,r) > EIC(s,r)l > If 2km

Since finding a maximumis in TCo,lhe whole circuit is. The circuit can be constructed
in functional LOQSPACT because ff is computable in functional LO]SPACt given n,
and the circuits from fact 2.5 can also be constructed in functional LOQSPACt.

Now to the problems in Mnx NP. Let l.9VzlA: g(r,y,G,S) be some predicate in
AIP and M be its maximization form. For a fixed input G and some u? the formula cp;

can either be satisfied by some y or not. Choose any A for which it is satisfiable if one

exists. Now again at least one assignment to the at most k variables S(z) satisfies p;, and
the same algorithm works as above.

Note also that the r may carry arbitrarily large positive weights (as the weights in
Max Cur, and that the algorithm still works (producing an output of at least If2klw;
instead of ll2km). !

We have seen that Max Cur can be approximated globally within a constant, and
this very fast. Thus the problem is also easy for local approximation. An open question
is whether Max Cur has a NCLAS, i.e., an approximation scheme for local optima. The
existence of a PTAS was excluded by the use of methods from the area of interactive proof
systems. A generalization of these methods to local optimization seems to be difficult.
Thus it remains as interesting open problem whether lv{ax Cur or other problems in
Max SNP that are hard for local search have fast parallel local approximation schemes.
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4.3 The Mex Cur Problem with signed weights

When the VInx Cur problem is generalized to signed weights the difficulty appears what
to do when all weights are negative and the problem collapses to MtN Cur. To keep

the correspondence to PN-HoPFIELD as close as possible we do not define special vertex
sets s and I as for MIrv Cur, but allow a cut to be an arbitrary partition of the graph
into two (even empty) sets. This implies that the global optimum is always nonnegative.
The problem is equivalent to PN-HoPFIELD regarding (global and local) optimization
complexity (see theorem 3.21).

The problem has not been investigated deeply. It is unknown if the problem can be

approximated globally in polynomial time or locally in functional AfC. Very recently
the algorithm of Goemans and Williamson [GoWi95] for Max Cur has been applied to
graphs with signed weights, yielding the following:

Fact 4.10 LetW_:D;<jw4, where r- : min(O,r). Then

- u;'ui) - W-) ,

where ElWl denotes the erpected ualue of the cut obtained by the algorithm, the u; are an

optimal solution of the problem relared to the reals between -\ and I (and thus the sum

iDnriwii(I - ni.ui) is an upper bound on the globally optimal cut), and o: .878.

Of course this is not an approximation algorithm in the usual sense. We pose the
question whether PN-Max Cur can be approximated, and more generally, whether
simple problems that are easy to approximate have efficient approximations when weights
are allowed to be signed.

(Etwt-w-) 2 o (lr*,,,,
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5 Conclusion
We havc clefined a new approach to cope with the haldness of optimization problems:
approximation of local optima. This approach could be useful when a problem cannot
be approximated globally and local search is hard, too. In the case of polynomially
bounded optirra local search is clearly possible in polynornial time, but one may ask for'

fast palallel algorithms. In the case of unbounded optima local search rray be halder
(PLS-completc, though these problems tend to behave rather well in most practicai
situations), and one could look for polynomial time algorithms. Since the structural
ploperty of local optimality is seldom of interest local approximations might h.ave some

practical valuc. Most local search approaches to optimization, like simulated annealing,
are hcuristics to find good solutions, and do not search local optima for their own sake.

The notion of local approximability is also of some theoretical interest. The approxi-
mations are very weak (we demand from a local approximation algorithm to producc a

solution almost as good as the worst nonnegative cost local optimum, see definition 2.16)
and should allow vely fast parallel algorithms in some cases. It would be interesting to
find out rvhether the relation between local search and local approximation is analogous
to that between global optimization and global approximation. A question related to this
is whether- Mnx Cur has a local approximation scherne. It should be possible to crea,te

a theory parallel to the theory of global approximation investigating such questions in
older to undelstand the nature of optimization problems more deeply.

One first step towards this is the introduction of a leduction. We proposed a spccial
kind of "local perfolmance ratio preserving reduction" (definition 2.17) and showed that
complete local search problems undcr this reduction exist (theorem 2.I5). These problems
cannot be approximated locally rnore ef{icient than optimized locally (theorem 2.17). This
was a non-sulprising correspondence to the theory of global approxirnation. Intuitively
there should be the same approximation degrees as in the case of global approximation:
approximation schemes, constant approxima,tions, etc. Unfoltunately we were not yet able
to fincl a, lesult strengthening the belief in a concrete pr-actical value of local approximation.
Ther-e is a candidate fol such a problem: the N-HoPFIELD function. This is a difficult
problem for global optirnization, global approximation, and local optimization (see section
3.2). It would be very nice to come up with an efficient local approximation algorithrn
fol this probiem.

After introducing the notion of local approximation we investigated the complcxity of
the Ilopfield energy function under the four approaches global optimization, global appro-
xirnation, local optimization, and local approximation. The consideration of this function
was rve1l motivated because iocal optinla are of special inl,erest here: the Hopfield energy
lunction defines a neural networ-k that determines local optima automatically and has rvi-
dely been applied to optirnization problems. We showed that the Hopfield energy function
on the domain {0,1} is very }rard-it is complete for the class of all global maximization
problems (in the case of unit weights for all global maximization problems with polynomi-
ally bounded optima) and complete for-the PLS resp. AfClLSp"t maximization problems
(unbounded resp. polynomially bounded optima) via approximability preserving leduc-
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tions (theor.em 3.20/23). This implies that the general Hopfield energy function is able
to e'xpress all ,\lP maximization problems such that local and global approximability is

prcscn'ed. Adclitionally the Hopfield energy function defines neural networks pclforrning
local sr:arch-thus one can say that it is an interesting programming lzrnguage of "lull"
cornplcrity.

We also considered restricted vc-,..sions of the general Hopfield energy function. The
version with positivc weights only is an easy to solve variant having a fast parallel global
optimization algorithm (polynomial weights) and a polynomial time global optimization
algolithrn (unbounded weights). An interesting structural property of this function is that
il, is almost equally hard to optimize locally as to optimize globally. The version of the
llopfield energy function with negative weights only is more mystcr-ious: it is very harcl

lor all the three appr-oaches'nve considered different frorrr local approxima,tion. A rnos1,

intcresting question is whether the problem can be approxirnated locally in AfC. Both
rcstricted versions can be viewed as variants rvhich allorv a progra,mming style adoptccl to
the complexit,y of the problem one wants to model. The Hopfieid energy function can be

seen as an inter-esting flexible unification of optirnization problems.
In section 4 rve examined graph cut problems that are exactly as hard to optimize as

the thlce velsions of thc Hopfield energy function. While s,l-VIIN Cur and P-Hopritnt,o
possibly have the sa,me appl'oximation complexity this is wron€j fol Ntlnx Cu't' ancl N-
Hopr.Inl,p: Max Cur cern be approximated globally within a consta,nt in functional
7C0. N-HoeFIELD ca,nnot be a,pproximated globally in polynomial time within n' for
some corrstant e > 0 (theolems 4.8 and 3.17). A question arising fi'orn the consideration
of a. generalized Max Cur problem is how well problems with signed weights can bc
approxirnated. This has not been discussed deeply (see [Ka92] for a catalogue of results
on approximation complexity). One example of dramatically increased hardness is PN-
Hoprtnlo. Tiris is equivalent to Max 2-DNF with signed weights on its conjunctive
clauscs and oniy positive occnrrenccs of variables. The normal Max 2-DNF is a member
of M,rx SNP ancl can thus be apploximatcd globally within a constant in furrctional
TCo dre to theorcrn 4.8, rvhile the problem with signed weights cannot be approximated
efficiently at all (thcolem 3.23).

Thcrc are many open cluestions rvolthy of further considelation:

r I{as NInx Cur a Jyl'C local approximation scheme (NCLAS)?

o llorv rvell can PN-Max Cur be approximatecl?

r Can s,I-MAX Ft ow with exponential weights be approximated in A|CT

o Can the lesuits in the table on page 25 be tightened?

- Tty to find a local approximation for N-Hoplrolplll or- a, hardness result fbr
PN-HopErELDlll

- Clan P-HoppInLD"p be approximated (locally or globally) in A|CT

o Are therc hard problems (fol loca,l search and global apploxirnation) rvith elficient
local approximations? We still have to corne up with the answer.
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A Definitions of Optirnization Problems
Here we provide exact definitions of the optimization problems considered in this paper. Z
denotes the set of instances, S the set of feasible solutions, 1/ the considered neighborhood,
C lhe cost function, opt indicates whether C has to be minimized or maximized. The
feasibility predicate P can easily be derived from ,9.

[1] P-HoeFrELD
7 : {HlH : ((.;,i)t< o,i3n,(t;)4;S'"ll1u;,i : wi,; 2 0}
S(fI) : {0,1}"
l/:1-flip
C (s, H) : D;<j wi3sisj - D;t;s;
opt: max

[2] N-HoeFrELD
I : {HlH : ((.;,i)t< ;,i3,,(tr)4t<n};w;,i : wj1 I 0}

S(H): {0, 1}"
1/ :l-flip
C (s, H) : D;<j wi,jsisj - Dtt$t
opt : max

[3] PN-HoPFTELD

7 : {HlH : ((.;,i)t< i,jsn,(ti);1..4,,.);w;,1 : wj,;}
s(1/) : {0,1}'
//:1-flip
C (s, H) : D;<j wi3sisj - D;t;st
opt : IJ,ax

[4] r, f-MIN Cur
I : {(G,s,tllG : (to1;,7;)r1i,jln;w(i,j) 2 0; s,t g {1, ...,n}; s,t # A}

^9(G,s,t): {y € {0,l}"lvi € s: A;:I,Vi €t: y;:0}
l/:l-flip
C(A,(G,s,l)) : Dfr,i) w1t,1p;(I - !t)
opt : rnin

[5] Max Cur
T : {GlG -- (*,,i)r<o,j<niw;1: u.ri,; ) 0}

^9(G) : {0,1}" - {0',1'}
l/:1-flip
C (s,G) : D<j w;,ils;(I - sj) + (1 - s;)sil
opt : rnax
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[6] PN-\4AX Cur
7 : {GlG : (wt,i)t<;,jSn)wt,j: wj,t}
,s(G) : {0, i}"
I/ :1-flip
C (s,G) : Dt<j w;,11s;(I - sj) + (1 - s;)sil
opt : Irlax

[7] s, t-Max FLow
I: {(G,s, t)lc: (.;i)r<r,i<niwi,,j - -wi1is,t C {1,... ,n};s,t + A}

S(G,s, t): {rlr: (rt,i)r;,j3n;Vi, j t l*;,il Sl.o,il;ro,i > 0 + w;,1 } 0;r;,1 < 0 =+
w;,j 10;rt,j - -ri,iYi $ sUt:l,rj,i:D*r;,*)
Nt(t, (G,s, t)) : {aly e S(G,s,,t);A;,i - ni,j - z;,j € {0,c,-c}; the z;,j } 0 form a

simple path from s to I in the graph of nonzero weighted edges). For this neighbor-
hood ("augmenting paths") local implies global optimality (see [VL90]).
N"(*,(G,",t)): {Aly e S(G,s,t);A;,i - rt,j - zt,j € {0,c,-c}; the zt,j } 0 form a

simple path from s to I in the graph of positively weighted edges]. Local optima
for l/z are called "blocking flows".

C (r, (G,s, l)) : Iie" Dj "i,,
opt : rnar

[8] IUoEenNDENT SEr
I : {GlG : (V,E) is an undirected graph}

.9(G) : {s e {0,1}"1", - sj:1+ {s;, "j} ( E}
1/ :l-flip
C(s,G): D; s;

opt : r-nax

[9] LoNcnsr PATH wrrH FonsroonN PArRS

I : {(G,P)lG : (V,E) is a directed graph; P CV2}
S(G,P): {(ir, ...,i*)l the vertices urr form a simple path in G without traversing
both vertices of a pair in P)
C ((it,. . .,in), (G, f1;1 : 1t

opt : fi\ax

[10] Max Sar
T: {FlF -- (V,D);V is a set of variables, D a set of disjunctive clauses of negated
and unnegated variables]

.9(f) : {D'C Dl an assignmenttoV exists so that D'is satisfied }
If :1-flip
c (D" F) : lD'l
opt: max
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[11] Max x-Sar
I: {FlF : (V,D);V is a set of variables,, D a set of disjunctive clauses of negated
and unnegated variables having length at most k]
,9(f) : {D'C Dl an assignmenttoV exists so that D'is satisfied }
1/ :1-flip
c(D" F) : lD'l
opt : Irlax

[12] Max DNF
I : {FlF : (V, D);V is a set of variables, D a set of conjunctive clauses of negated
and unnegated variables)

S(F) : {D'C Dl an assignmenltoV exists so that D'is satisfied }
l/:1-flip
c (D" F) : lD',l
opt : rJlax

[13] Max K-DNF
7 : {FlF : (V, D);V is a set of variables, D a set of conjunctive clauses of negated
and unnegated variables having length at most k]
S(F) : {D' g Dl an assignmenttoV exists so that D'is satisfied }
l/ :l-flip
c (D' , F) : lD',l
opt: I.r.ax

[14] Max CrRcurr Ourpur
I : {TlT is circuit made of fan-in 2 and fan-out 2 AND/OR/NOT gates, 7 has p
inputs and q outputs outl.j
s(7) : {0,1}o
l/ :1-flip
C (s,T): D|=-ot outl (s)2i

opt: max
If the depth is restricted to log" l7l then the problem is called,A/C"-Max Crncurr
Ourpur.
The local optimization version of these problems is called lN[C'-l FlIp.
If q < k . log l?l then the local optimization version is called lNf C"-l FLIP;.lor.
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